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1. Introduction
Theoretical investigations of femtosecond dynami-

cal processes in elemental clusters and their active
control by designed light fields are of fundamental
importance for learning how the interplay of size,
structures, and lasers can be used to manipulate
optical properties and chemical reactivity of these
species. This research area provides a potential for
establishing foundations for combining laser-selective
femtochemistry1-11 with the functionalism of nano-
structures, opening new perspectives for the basic
research and numerous technological applications. In
this context, exploration of clusters in the size regime
in which each atom counts12-15 is of particular
importance. This is due to the fact that in this case
structures and the number of atoms determine the
size-selective optical and reactivity properties of
clusters. Moreover, they are excellent candidates to
study dynamics of systems with finite density of
states, where the separation of time scales is fea-
sible.14 The purpose of the present review is three-
fold: to survey the present status of theoretical
concepts and computational approaches applicable for
investigation of time-resolved processes and their
optical control by designed laser fields in elemental
clusters; to show the importance of the interplay
between theory and experiments; and to stimulate
new developments and new directions in this re-
search area. We focus on analysis and control of
ultrafast processes in weak fields and in gas-phase
elemental clusters with binding energies beyond
those of weakly bound van der Waals clusters.

The review is organized as follows. Section 2 serves
to establish the connection between developments in
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cluster science and femtosecond spectroscopy. This
sets up requirements on the theory to introduce
means for analyzing and controlling the ultrafast
processes and to provide the conceptual frame for
observations. For this purpose contributions from

quantum chemistry, molecular dynamics, wave packet
propagation, and theory of optical control are needed.
Therefore, the aim of this paper is not to give a
complete review of each of these fields separately, but
rather to focus on unifying interdisciplinary aspects.
In section 3 we address methods for investigations
of ultrafast dynamics and for simulations of femto-
second signals (fs-signals). Their applications to
elemental clusters with different sizes and atomic
compositions, allowing us to analyze the underlying
processes and to predict observable properties, are
given in section 4. Section 5 is devoted to control of
ultrafast processes in clusters by tuning laser pa-
rameters or using tailored fields. The summary and
outlook are given in section 6. Section 7 contains a
list of references which is constructed according to
the interdisciplinary aspect of this review and there-
fore does not provide a complete literature survey for
each of the involved research fields. Appendices A
and B serve as supporting material for sections 4.2.1
and 4.3.1.

2. Cluster Research and Ultrafast Time Resolved
Phenomena

2.1. General
Over the last three decades cluster science has

become an established and recognized research area
in physical and theoretical chemistry and molecular
physics. This is due to numerous important discover-
ies emerging from pronounced size-dependent micro-
scopic properties which clusters, isolated or embed-
ded in different media, can exhibit. Experimentally,
the clusters have been observed in supersonic expan-
sions, their size has been selected by mass spectrom-
eters, and their spectroscopic properties have been
precisely determined by different laser techniques (cf.
books and reviews for refs 2, 13, and 16-23). The
investigations of clusters have been carried out in the
gas-phase,13,16,20-23 in matrixes of rare gas atoms,24-28

and on different support materials,29-34 and their
reactivity toward organic and inorganic molecules
has been studied.35-48

The interest of many researchers in the field of gas-
phase clusters was first focused on scalable properties
concerning a smooth transition from small particles
to solids,49,50 searching for different phase transi-
tions.51-56 However, in the meantime, it has been
fully recognized that the nonscalable properties in
the nanosize regime from a few atoms to a consider-
able number of atoms are of particular importance.12-15

The nature, size, and structure of the confinement
have given rise to many novel and unexpected
properties with a large potential for applications in
different technologies. Attention has been paid first
to the stationary ground state and to the optical
properties of gas-phase clusters as a function of their
size, and many surprising phenomena have been
discovered.12,16,17,19 Solvation, energy transfer, and
reactivity are other aspects which received consider-
able attention.14,20,21 In contrast, ultrafast time-
resolved studies on clusters22,23 became available only
in the past decade due to advances in conceptual and
technical aspects of the femtosecond pump-probe
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spectroscopy (compare ref 5 and references therein).
The time-resolved ultrafast laser studies carried out
on clusters provided findings on the nature and time
scales of processes such as conformational changes,
internal vibrational energy redistributions (IVRs),
charge separation, and Coulomb explosion.14,21-23

Furthermore, due to advances in laser technology,
the femtosecond pulse shapers permitted the ma-
nipulation of very short femtosecond laser pulses
giving rise to specially designed laser fields which
are able to guide molecular dynamics to the desired
target such as a given fragmentation channel, a
particular isomer, or an aimed reaction product.11,57-78

Complementary to experimental developments, the
role of theory in the field of cluster research has been
essential from a conceptual as well as from a quan-
titatively predictive point of view. Theory provided
information on structural, bonding, reactivity, and
optical properties of gas-phase clusters12,43,44,46,79-103

and allowed one to account for the influence
of different media such as solvation,14,104,105

matrixes,106-108 and support materials.29-31,109,110 In
particular, the connection between energetic, struc-
tural, and electronic properties as a function of the
size has been established for gas-phase metallic
clusters.12,16,17 Notice that direct experimental deter-
mination of cluster structures in the gas-phase is still
very difficult and mostly not available for an arbi-
trary size and atomic composition. However, indirect
information can be obtained from spectroscopic ob-
servations. Comparison between theoretical spectra
calculated for the stable structures of clusters and
experimental data allowed identification of the struc-
tures responsible for the observed spectral fea-
tures.12,17,98,99 Moreover, the analysis of electronic
properties responsible for the characteristic spectro-
scopic patterns provided a conceptual framework for
nonscalable optical properties.12,79 The influence of
temperature in experimental findings111 has also
been elucidated.79,99 In the case of clusters interacting
with different media, the complexity increases and
the role of theory to unravel different effects and to
establish a connection among them has become
increasingly important.14,29-31,109,110 The situation is
particularly demanding if dynamical aspects of clus-
ters are considered. Time-resolved observations are
strongly dependent on the setup of experimental
conditions such as laser wavelengths, duration of
laser pulses and their shapes, competition between
one- and many-photon effects, strength of the electric
field, and so forth. Here theory has the role not only
to provide insight into the nature of time-dependent
processes but also to identify the conditions under
which they can be observed.112-125 Consequently,
theory is directly involved in conceptual planning of
time-resolved experiments. The prominent examples
are theoretical proposals of different optical control
schemes exploiting laser field parameters in order to
manipulate ultrafast processes.2,126-131 They stimu-
lated control experiments, first on simple systems
such as metallic dimers and trimers132-154 and later
on more complex systems58-60,73,78,155,156-159 which
confirmed the conceptual frame of the proposed
theoretical schemes outlined in section 2.3.

2.2. Dynamics and Ultrafast Observables
Femtosecond spectroscopy became a powerful tech-

nique for the real-time investigation of intra- and
intercluster and molecular electronic and nuclear
dynamics during the geometric transformation along
the reaction coordinate. It is based on the preparation
of the transition state of the chemical reaction by the
optical excitation of a stable species in a nonequilib-
rium nuclear configuration in the pump step, and
probing its time evolution by laser induced tech-
niques such as fluorescence, resonant multiphoton
ionization, or photoelectron spectroscopy. This ap-
proach was pioneered by Zewail et al. for bimolecular
reactions.160-162 For an elementary reaction involving
breaking of one bond and creation of another one,
changes in intermolecular separation of ∼10 Å are
observable on a time scale of 1-10 ps. For this
purpose, the duration of the probe step must be 10-
100 fs if a resolution of ∼0.1 Å has to be achieved. In
another approach advanced by Neumark et al. and
Lineberger et al., a nonequilibrium or transition state
can also be produced by vertical photodetachment of
stable negative ions. The transition state of the
neutral species can be close to the stable geometry
of anions as shown by Neumark et al.,22,163-171 or it
can provide the starting point for the isomerization
process in the neutral ground state as illustrated by
Lineberger et al.172-174 The negative ion-to-neutral-
to-positive ion (NeNePo) pump-probe experiments
introduced by Wöste and his colleagues175,176 ad-
vanced the vertical one-photon detachment tech-
nique, allowing probing of structural and isomeriza-
tion relaxation in neutral clusters as a function of
the cluster size.175 An extension of the NeNePo
technique by two-color excitations has been proposed
by Lineberger et al.177 Complementary, time-resolved
photoelectron spectroscopy22 became a powerful tech-
nique applicable to clusters as well.178 Recent devel-
opments of time-resolved techniques such as ultrafast
electron diffraction179 and time-domain X-ray absorp-
tion180 allow one to reveal transient molecular struc-
tres in chemical reactions of complex systems and in
excited states of molecules.

However, the conceptual framework of ultrafast
spectroscopy is provided by theory and simulations
which allow determination of the time scales and the
nature of configurational changes as well as internal
energy redistribution (IVR) in vertically excited or
ionized states of clusters.112-117,119,181 The separation
of time scales of different processes is essential for
identifying them in measured spectral features.
Moreover, the distinction between coherent and dis-
sipative IVRs in finite systems can be addressed as
a function of the cluster size. For investigation of
intra- and intercluster dynamics in fs-spectroscopy,
which involves the generation of the initial conditions
and multistate dynamics for the time evolution of the
system itself and for the probe or the dump step, two
basic requirements have to be fulfilled. The first is
the use of accurately determined electronic structure
in the ground and excited states as a function of all
degrees of freedom. In the case that the electronic
states involved are well separated, the Born-Oppen-
heimer approximation is valid and the adiabatic
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dynamics is appropriate. In contrast, if avoided
crossings and conical intersections between electronic
states are present during the geometric and chemical
transformation, breakdown of the Born-Oppenhe-
imer approximation occurs and nonadiabatic effects
have to be taken into account. This represents an
additional theoretical and computational challenge.
The second basic requirement is the accurate simula-
tion of ultrafast observables such as pump-probe
signals. This involves appropriate treatment of opti-
cal transitions such as ultrafast creation and detec-
tion of the evolving wave packet or classical en-
semble. In the latter case, the dynamics is described
by classical mechanics, and the average over trajec-
tories has to be made in order to simulate the
spectroscopic observables.

Accurately precalculated global ab initio energy
surfaces of ground and excited states have been
limited to systems with few atoms for which quantum
dynamics of nuclei is feasible. Therefore, investiga-
tions of ultrafast dynamics have been carried out for
metallic dimers132,133,136,182-191 and trimers.192-199 In
contrast, for larger systems in general, either a few
degrees of freedom can be selected for explicit treat-
ment or model potentials have to be used. Both
situations are generally not applicable to elemental
clusters, in particular with metallic atoms,12 since
usually they do not contain a “chromophore type”
subunit or they do not obey regular growth pat-
terns.56 An addition of a single atom can produce
drastic changes in the properties of their ground and
excited states. Therefore, in the majority of cases, all
degrees of freedom have to be considered, and semiem-
pirical analytic potentials are usually not suitable,
since they do not properly describe structural and
electronic properties with changing cluster size.
Consequently, first principle (ab initio) molecular
dynamics (AIMD) “on the fly”, without precalculation
of the energy surfaces, represents an appropriate
choice to study ultrafast processes in elemental
clusters with heavy atoms for which, in the first
approximation, the classical description of nuclear
motion is acceptable. This method, pioneered by Car
and Parrinello200 and based on the density functional
method and plane wave basis sets, was originally
introduced for the dynamics in the electronic ground
state. The basic idea is to compute forces acting on
nuclei from the electronic structure calculations
which are carried out “on the fly”.201 Related AIMD
methods with plane wave basis sets have also con-
tributed significantly to the success in applications
on clusters.202

For fast calculations of forces, analytic gradients
are needed. They have been developed for geometry
optimization in quantum chemistry methods203-206 at
different levels of accuracy and are, therefore, also
available for the MD schemes along the molecular
dynamics trajectories. Advances in these techniques
over the last few years provided an excellent basis
for applications of ab initio ground-state classical MD
on small and large systems with controllable ac-
curacy, depending on the method used for calculation
of the electronic structure (e.g. different versions of
density functional methods with atomic basis sets207,208

or other approaches accounting for the electronic
correlation effects209,210).

The situation is still very different for ab initio
adiabatic and nonadiabatic MD “on the fly” involving
excited electronic states. Despite recent efforts and
successes,115,116,211-215 further development of such
theoretical methods which combine accurate quan-
tum chemistry methods for electronic structure with
MD adiabatic and nonadiabatic simulations “on the
fly” has promise to open many new possibilities for
successful investigation of fs-processes. This research
area will essentially remove borders between quan-
tum chemistry and molecular dynamics communities,
although each of them has numerous challenging
tasks to be accomplished in order to provide a
conceptual frame for fs-chemistry and -physics of
molecules and clusters. In this context, very intense
research is presently going on along two main
avenues. One is to achieve fast calculations of forces
in excited states, as well as of nonadiabatic couplings,
at the level of theory accounting for electron correla-
tion effects with controllable accuracy which are
suitable for implementation in different adiabatic and
nonadiabatic MD schemes “on the fly”.215 The second
is to introduce quantum effects for the motion of
nuclei, particularly in the case of nonadiabatic
dynamics,216-226 in systems with a considerable num-
ber of degrees of freedom, allowing for their identi-
fication in spectroscopic observables such as fs-
signals. For each of these two research areas, excellent
reviews are available.215,217,218,221,227,228

2.3. Concepts for Control of Ultrafast Processes
The idea to control the selectivity of product forma-

tion in a chemical reaction, using ultrashort pulses
by the proper choice of their phase or of the time
duration and the delay between the pump and the
probe (or dump) step, is based on exploitation of the
coherence properties of laser radiation due to quan-
tum mechanical interference effects.126-130,229 First,
single-parameter control schemes were proposed.
Within the Brumer-Shapiro phase-control
scheme,129,130,229 constructive and destructive interfer-
ence between different light induced reaction path-
ways is used in order to favor or to suppress different
reaction channels. The other scheme, introduced by
Tannor and Rice,126,127 takes advantage of differences
in potential energy surfaces of different electronic
states and, therefore, uses the time parameter for
control. The pump pulse brings the system to non-
equilibrium configurations from which transforma-
tions such as bond stretchings take place. If the probe
or dump laser is timed properly, different pathways
to dissociation of one of the stretched bonds can be
achieved. Both single-parameter control schemes
were confirmed experimentally.132-135,190,230-236 An-
other single-parameter control is a “linear chirp”237,238

corresponding to a decrease or increase of the fre-
quency as a function of time under the pulse enve-
lope. This was the first step toward shaping the
pulses in the framework of so-called many-parameter
optimal control theory (OCT). Tannor and Rice have
first variationally optimized electric fields.239 Then
the optimal control theory was applied to molecular
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problems by Rabitz et al.,131,240-242 Kosloff et al.,243

and Rice et al.244 Technological progress due to fs-
pulse shapers allowed manipulation of ultrashort
laser pulses.57,62,63,65,66 Finally, a closed loop learning
control (CLL) was introduced by Judson and Rabitz
in 1992,245 opening the possibility to apply optimal
control on more complex systems. Since the potential
energy surfaces (PESs) of multidimensional systems
are complicated and mostly not available, the idea
was to combine a fs-laser system with a computer-
controlled pulse shaper to produce specific fields
acting on the system initiating photochemical pro-
cesses. After detection of the product, the learning
algorithm57,246,247 was used to modify the field based
on information obtained from the experiment and
from the objective (the target). The shaped pulses
were tested and improved iteratively until the opti-
mal shape for the chosen target was reached. Such a
black box procedure is extremely efficient, but it does
not provide information about the nature of the
underlying processes which are responsible for the
requested outcome. The success of the above-men-
tioned schemes has been demonstrated by control
experiments.58-76,147-152,248 However, any multipa-
rameter optimization scheme has a drawback of
having a manifold of local solutions which are reach-
able depending on initial conditions. Intense research
activity is directed toward improvements of these
aspects, particularly in the closed loop learning
control.249,250 The application of optimal control theory
has a broad spectrum which will not be addressed in
its completeness here. This includes research direc-
tions such as laser cooling of internal degrees of
freedom of molecules and quantum computing (cf.
refs 251-255 for examples of metallic dimers), since
they require inclusion of additional methodological
aspects.

Since tailored laser pulses have the ability to select
pathways on the parts of energy surfaces which
optimally lead to the chosen target, their analysis
should allow one to determine the mechanism of the
processes and at the end provide information about
important parts of the PES (so-called inversion
problem187,256-259). Therefore, developments of theo-
retical methods are needed which allow one to design
interpretable optimal laser pulses for complex sys-
tems such as clusters or biomolecules, by establishing
the connection between the underlying dynamics and
their shapes. Until recently, the limitation was
imposed by difficulties in precalculating multidimen-
sional surfaces. To avoid this obstacle, ab initio
adiabatic and nonadiabatic MD “on the fly” without
precalculation of the ground and excited state energy
surfaces is particularly suitable provided that an
accurate description of the electronic structure is
feasible and practicable. Moreover, this approach
offers the following advantages. The quantum-clas-
sical correspondence between trajectory and wave
packet is valid for short pulses and short time
propagation. MD “on the fly” can be applied to
relatively complex systems, and moreover, it can be
implemented directly in the procedures for optimal
control. This allows one to identify properties which
are necessary for ensuring the controllability of

complex systems and to detect mechanisms respon-
sible for the obtained pulse shapes. In the above-
mentioned context, the Liouville space formulation
of optimal control theory developed by Yan, Wilson,
Mukamel, and their collegues,260-272 in particular its
semiclassical limit in the Wigner representation,121,262

is very suitable despite its limitations. For example,
quantum effects such as interference phenomena or
tunneling and zero point vibrational energy are not
accounted for. The study of clusters with varying size
offers an ideal opportunity to test these concepts and
methods as well as to investigate conditions under
which different processes can be experimentally
controlled and observed.

3. Methods for Dynamics in Ultrafast
Spectroscopy

In the classification of different theoretical ap-
proaches, three important aspects have to be consid-
ered. They concern electronic structure methods,
dynamics of nuclei, and dynamics of optical transi-
tions. Concerning the first aspect, we focus on ab
initio time-dependent quantum chemistry approaches
for the ground and excited states, including a nona-
diabatic coupling between electronic states if neces-
sary. The dynamics of nuclei can be described by
classical trajectories or by quantum dynamics, de-
pending on the atomic composition of the system
(heavy or light atoms) and on the choice of questions
to be addressed. In contrast, the time-dependent
interaction with the light, giving rise to transitions
from one electronic state to the other, is of quantum
mechanical nature. Therefore, the semiclassical ap-
proaches for dynamics in fs-spectroscopy can involve
a pure classical description of nuclei as well as
different quantum corrections for propagation of
nuclei while the electronic structure is described
quantum mechanically. In contrast, full quantum
mechanical approaches treat dynamics of nuclei and
of optical transitions quantum mechanically and are
still limited to a small number of degrees of freedom.
Moreover, they rely on precalculated energy surfaces.
Since in this review we do not address systems for
which active and passive degrees of freedom can be
separated, neither mixed quantum-classical (hybrid)
methods106 for propagation of nuclei nor methods
describing chromophore-environment separation273-275

will be addressed. We focus on semiclassical ap-
proaches, in particular those which can be connected
with ab initio MD “on the fly”, giving rise to classical
trajectories. The full quantum mechanical methods
for dynamics will briefly be outlined in connection
with their applications to systems with few atoms.

3.1. Time-Dependent Quantum Chemistry

The important starting step in introducing time
into quantum chemistry was the implementation of
analytic energy gradients for the optimization of the
geometries in the ground states which was pioneered
by Pulay.203 In the meantime, the analytic energy
gradients are available for numerous wave function
based methods204 as well as for density functional
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theory,276-278 accounting for electron correlation ef-
fects at different levels of accuracy. This includes the
variational procedures beyond the Hartree-Fock
approximation [such as different variants of config-
uration interaction (CI) methods and the multicon-
figurational self-consistent field (MCSCF) procedure]
as well as the perturbation approaches [such as many
body perturbation theory (MBPT) and the coupled
cluster (CC) method].204 Large progress in this field
is characterized by improving efficiency at a high
level of accuracy. This allows the computation of
forces needed for the ab initio molecular dynamics
(AIMD) “on the fly”, which couples quantum mechan-
ical treatment of electrons and forces acting on nuclei
with classical equations of motion. The first proposal
along these lines can be found in an early paper of
Leforestier.201 However, the success of the first
principle AIMD “on the fly” was initiated by the Car-
Parrinello method,200 which is based on the density
functional method and employs plane waves as basis
sets allowing use of Hellmann-Feynman forces. This
is computationally considerably less demanding than
the calculations of exact Pulay forces204 in the frame-
work of quantum chemistry methods based on wave
function approaches or density functional theory,
both employing Gaussian atomic basis sets. Different
versions of the Car-Parrinello method (cf. ref 215),
as well as implementation of Gaussian basis sets and
exact forces at different levels of correlation treat-
ments by a number of groups,279-283 allowed for an
enormous number of applications of ground-state
adiabatic MD in different fields. Furthermore, ad-
vances in density functional theory (DFT) due to
gradient corrected functionals (GDFTs) for exchange
and correlation, leading to a more realistic descrip-
tion of the bonding, made the density functional
method284-289 become an established approach in
quantum chemistry and in AIMD “on the fly” for the
ground states. Although the accuracy of DFT is less
controllable than in the case of wave functions based
ab initio methods, computational demand is consid-
erably lower.

The MD procedure “on the fly” is very simple; the
time evolution of the atoms is simulated by classical
trajectories obtained by the numerical solution of
Newton’s equations of motion. For this purpose, the
Verlet algorithm290 is particularly suitable. According
to this algorithm, the position and velocity of the
nucleus i(ri,vi) at time step tn ) n∆t are obtained
recurrently:

The force Fi
(n) acting on nucleus i is related to the

gradients of the total molecular energy computed, for
example, at the GDFT level. In AIMD-GDFT proce-
dures the ground-state electronic wave function and
energy are computed at each time step (i.e. for each
geometric configuration). The electronic energy ob-
tained from an iterative Kohn-Sham procedure
contributes to the total potential energy, and the

forces acting on the nuclei are determined as corre-
sponding derivatives. The MD can be carried out
either at constant total energy or at constant tem-
perature. To achieve the conservation of these quan-
tities, the high accuracy of calculated forces is
mandatory. This requirement necessarily increases
computational demand.

Originally, most applications were focused on the
search of structures. In this case, the advantage of
AIMD with respect to the gradient methods for
geometry optimization is that all local minima can,
in principle, be accessed. Thus, for example, the
cluster geometries generated along the classical
trajectories at high temperatures can be used as
starting points in the search of isomeric forms on the
potential energy surfaces. Moreover, the applications
of AIMD were extended to studies of tempera-
ture-dependent properties such as isomerization
effects281-283,291 and finally became extremely useful
for exploring ultrafast processes.79,115-122,292-294

The situation is still different for the description
of excited states, particularly in connection with MD
“on the fly”. This requires more demanding treatment
of electron correlation effects, taking into account
large bonding rearrangements specific for the given
excited state. In this context, single-reference cor-
relation methods, such as CI with single and double
excitations (CISD) or coupled cluster with single and
double excitations (CCSD), can often be inadequate,
since they suffer from lack of multireference charac-
ter. For example, a Slater determinant with a double
excitation can have a leading role in a CI expansion
of a given excited state. The latter can be introduced
by choosing the adequate set of reference configura-
tions and performing single and double excitations
with respect to all of them by the MRCI procedure.
The other possibility is to carry out MCSCF calcula-
tions, which allow for improvement of the quality of
the molecular orbitals, and to take electron correla-
tion effects into account simultaneously. The com-
plete active space SCF (CASSCF) is a special case of
MCSCF in which a full CI procedure (complete
optimization of both MO and CI spaces) is performed
within the limited orbital set called active space.295-297

The problem with these methods is determination of
several roots of different symmetries. This is not
straightforward, because of possible root switching
occurring due to changes in the geometric configura-
tions, and it can, in particular, be inconvenient in
connection with MD “on the fly”. Another alternative
is given by the generalized valence bond (GVB)
theory, in which contributions of covalent and ionic
states are treated at equal footing. In the framework
of these wave function methods, the analytic gradi-
ents for excited states are available for various
Hartree-Fock based schemes,115,116 generalized va-
lence bond (GVB),298-302 multiconfiguration self-
consistent field (MCSCF),204,303 complete active spaces
SCF (CASSCF),304-306 and truncated (CIS)307 and full
configuration interaction (CI) methods.308 Most of
them are also implemented in different quantum
chemistry programs.309-311

The other class of methods for which the gradients
in excited states are available belongs to linear

ri
(n+1) ) 2ri

(n) - ri
(n-1) + ∆t2

m
Fi

(n) (1)

vi
(n) ) (ri

(n+1) - ri
(n))/(2∆t) (2)
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response approaches based on time-dependent per-
turbation theory. The simplest approximation can be
obtained by taking HF wave functions as a reference
and including only single excitations and interactions
of double excitations with the ground state called de-
excitations, leading to the random phase approxima-
tion (RPA).211,213 Therefore, the RPA method gives
rise only to accurate results for excited states which
are dominated by singly-excited configurations. More-
over, due to some contributions of the double excita-
tions, the results are better than those obtained from
CI with single excitations only (CIS). The reference
function can be improved by using the MCSCF wave
function instead of the HF one or by including higher
order excitation operators. To achieve better ac-
curacy, linear response methods based on the coupled
cluster reference wave function have been developed
in the framework of the equation of motion methods
(EOM-CCSD).312,313 The computational demand of the
EOM-CCSD method is large, since each excited state
requires more than 50% of the ground-state CCSD
calculation. To reduce the computational demand, the
similarity transformed equation of motion coupled
cluster (STEOM-CC) method, which reduces the
coupling between the singly-excited determinants
and those with higher excitations, has been intro-
duced.314 The methods such as the RPA and EOM-
CCSD, which are based on the linear response
formulation, have advantages to allow for the calcu-
lations of many excited states at once. However, since
both of them use a single-reference function, the
former one a Hartree-Fock single determinant and
the latter one a correlated CCSD wave function, they
do not allow for accurate description of excited states
dominated by double excitations. Very recent devel-
opments such as implementation of analytic gradi-
ents for excited states for the approximate coupled-
cluster singles and doubles model (CC2) employing
the resolution-of-the-identity (RI) approximation for
electron repulsion integrals represent a promising
trend214 to decrease the computational time and to
provide a relatively accurate description for excitation
energies. However, these methods are also based on
a single-reference wave function and exclude an
appropriate description of a number of photochemical
processes which require multireference treat-
ment.315-317 Formulation of analytic gradients in
excited states for a multireference wave function is
also available in the framework of the direct CI
method.318,319 Calculations of gradients in excited
states and forces for MD “on the fly” using highly
correlated quantum chemistry methods are still
computationally extremely demanding. Further de-
velopment is needed, particularly in lowering the
computational demand of MRCI methods in order to
apply them in MD “on the fly” for excited states.

Another type of approach based on DFT is the time-
dependent density functional linear response (TD-
DFT),211-213 which also belongs to linear response
approaches. This method, in particular with the use
of relatively accurate exchange-correlation function-
als, has been applied for calculation of excitation
spectra and other properties in the frequency do-
main.213 Analytic formulation of gradients in excited

states in the framework of TD-DFT also became
recently available, allowing one to carry out adiabatic
AIMD “on the fly” in the excited states, but still for
relatively small systems.211-213 The results are ex-
pected to be more accurate for the low excited states
than for the energetically higher lying ones and for
those in which single-reference character prevails.
Therefore, the further development of reliable func-
tionals for excited states is needed, and multirefer-
ence contribution to the excited states in the frame-
work of the DFT method requires future development.
Also, Car-Parrinello MD simulations for excited
states, based on the restricted open shell Kohn-
Sham formulation and TD-DFT using the adiabatic
local density approximation (ALDA) and the plane
wave basis set with pseudopotentials, have been
formulated. Different test calculations have been
performed, and the field is in a promising stage of
development (for details, cf. ref 215).

First principle theoretical treatment of nonadia-
batic dynamics beyond model systems requires a
double task: that is to solve the problem of coupling
among electronic states and to treat nonadiabaticity.
Concerning the first aspect, either an adiabatic or
diabatic representation can be chosen. The first
diagonalizes the potential energy, and the second
diagonalizes approximately the kinetic energy of
nuclei. The diabatic representation gives rise to
smoother potential energy surfaces. The adiabatic
representation requires the calculations of nonadia-
batic couplings between the electronic states. In the
case that their analytic formulation is available, the
implementation in procedures for nonadiabatic dy-
namics “on the fly” is straigthforward, allowing one
to calculate simultaneously energy surfaces and
nonadiabatic couplings for systems with a consider-
able number of degrees of freedom. This is possible
in the framework of HF based methods,116

CASSCF,304-306,320-322 and recently for different levels
of the CI method.318,319

Time-dependent density functional theory in the
time domain accounting for nonadiabatic effects has
been developed until now in two directions. The first
one could be called Ehrenfest molecular dynamics
based on Kohn-Sham density functional theory.323-328

The second one is in the framework of the Car-
Parrinello approach, which includes computation of
nonadiabatic coupling elements based on the orbital
velocities available within this method.215,329

Another recent development of nonadiabatic dy-
namics “on the fly” is based on the analytical formu-
lation of gradients for semiempirical CI wave func-
tions with floating occupation molecular orbitals.330

The time-dependent electronic wave function is then
propagated by means of a local diabatization algo-
rithm.331 The fractional occupation SCF plus CI
technique is adequate for description of bond break-
ing and orbital degeneracies and treatment of several
electronic states on equal footing. This is particularly
important for an appropriate description of photo-
chemical processes.332-334 However, the accuracy of
such methods depends on the quality of the param-
etrization, which is easier to obtain for second and
for third row atoms than for heavier elements. These
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approximate methods are promising for applications
to larger systems.

3.2. Semiclassical Multistate Nuclear Dynamics
and fs-Signals

Semiclassical methods for dynamics combine clas-
sical mechanics and quantum mechanics. They are
particularly attractive for obtaining insight into
complex systems with heavy atoms for which full
quantum mechanical treatment of dynamics is not
mandatory and is usually prohibitive due to their
size. Semiclassical methods for dynamics, which
make use of classical trajectories with quantized
initial conditions, are suitable for applications to such
systems. However, the approaches which are able
to include the quantum coherence216 and tunnel-
ing217,335,336 effects into classical MD approximately
are very valuable and inevitable for the description
of some processes (e.g. motion of light atoms such as
proton transfer). Moreover, all the processes which
involve transitions between different electronic states
require quantum mechanics for the adiabatic or the
nonadiabatic dynamics and should in some manner
be incorporated consistently with the dynamics of
nuclei. Semiclassical methods which contain the
superposition of probability amplitudes are therefore
capable of providing an approximate description of
quantum effects in molecular dynamics221 (interfer-
ence, tunneling, etc.). Classical MD in different forms,
including ab initio MD “on the fly”, is now applicable
to relatively large systems, and classical trajectories
can be used as inputs in semiclassical approaches for
simulations of observables. Moreover, in principle, it
is also possible to add quantum effects to classical
MD simulations “on the fly”.335,336 Therefore, we focus
on the approaches which are able to make use of
classical adiabatic and nonadiabatic AIMD and time-
dependent quantum chemistry.

The time evolution of the density operator F̂(t) is
given by the quantum mechanical Liouville-von
Neumann equation

where Ĥ is the Hamiltonian of the system. This offers
an appropriate starting point for establishing semi-
classical approaches. Equation 3 has a well-known
classical limit in the case of the nuclear dynamics
on a single electronic surface, corresponding to the
classical Liouville equation of nonequilibrium statis-
tical mechanics:

Here F ) F(q,p,t) and H ) H(q,p,t) are functions of
classical phase space variables (q, p), and

is the Poisson bracket. The classical limit can be
derived from eq 3 by means of a Wigner-Moyal
expansion337-339 of the quantum mechanical

Liouville-von Neumann equation in terms of p,
which emerges from the replacement of the com-
mutator by the Poisson bracket if the expansion is
terminated to the lowest order of p:

Higher order terms in p serve for introduction of
quantum effects in the dynamics.

The semiclassical limit of the Liouville formulation
of quantum mechanics, based on the Wigner-Moyal
representation of the vibronic density matrix, offers
a methodological approach suited for accurate treat-
ment of ultrafast multistate molecular dynamics and
pump-probe spectroscopy using classical trajectory
simulations.112,113,115,116,340 This approach is character-
ized by the conceptual simplicity of classical mechan-
ics and by the ability to approximately describe
quantum phenomena such as optical transitions by
means of the averaged ensemble over the classical
trajectories. Moreover, the introduction of quantum
corrections can be made in a systematic manner. The
method requires drastically less computational afford
than full quantum mechanical calculations, it pro-
vides physical insight in ultrafast processes, and it
is applicable to complex systems. Additionally, it can
be combined directly with quantum chemistry meth-
ods for electronic structure to carry out the multistate
dynamics at different levels of accuracy including
precalculated energy surfaces as well as the ab initio
MD “on the fly”, which will be addressed separately
later. The approach is related to the Liouville space
theory of nonlinear spectroscopy in the density
matrix representation developed by Mukamel and his
colleagues (cf. ref 341). Following the proposal by
Martens et al.340 and our own formulation,112,113,115,116

the method is briefly outlined in connection with its
application to simulations of the time-resolved pump-
probe or pump-dump signals, involving first adia-
batic and then nonadiabatic dynamics.

3.2.1. Adiabatic Dynamics
The Hamiltonian of a molecular system repre-

sented in terms of adiabatic electronic states which
is coupled to an electromagnetic field ε(t) can be
written as

with the vibrational Hamiltonian ĥa(Q) of the adia-
batic electronic state a, the collection of vibrational
coordinates Q, and the dipole approximation for
interaction with the electromagnetic field. The matrix
elements of a quantum mechanical operator Â(t) in
the real space representation are given by A(Q,Q′,t)
≡ 〈Q|Â(t)|Q′〉. Introducing the center of mass coordi-
nate q ) (Q + Q′)/2 and the relative coordinate s )
Q - Q′, the Wigner transform A(q,p,t) of the operator
Â(t) is defined as

ip ∂F̂
∂t

) [Ĥ, F̂] (3)

∂F
∂t

) {H, F} (4)

{H, F} ) ∂H
∂q

∂F
∂p

- ∂F
∂q

∂H
∂p

(5)

[Â, B̂] f ip{A, B} + O(p3) (6)

Ĥ ) Ĥmol + Ĥint ≡ ∑
a

|a〉ĥa(Q)〈a| -

ε(t)(∑
a,b

|a〉µ̂ab(Q)〈b| + h.c.) (7)

A(q,p,t) ) 1
2πp

∫-∞
∞

ds e-ips/pA(q-s
2

,q+s
2

,t) (8)
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The dynamics of the system in the Wigner ap-
proach112 is characterized by Wigner distributions
Pab(q,p,t). They are defined as the Wigner transform
of the vibrational density matrix elements F̂ab(Q,Q′,t)
≡ 〈a|〈Q|F̂(t)|Q′〉|b〉. From this definition, the physical
meaning of the Wigner distributions is straightfor-
ward. The diagonal elements Paa(q,p,t) are the oc-
cupation densities of the electronic state a whereas
the off-diagonal elements Pab(q,p,t) (a * b) determine
the transition probabilities from the electronic state
a to the state b.

The equation of motion for the Wigner distributions
can be obtained by transforming the exact quantum
mechanical Liouville-von Neumann equation for the
density operator, which takes the following form for
the vibronic density matrix:

The intramolecular dynamics is determined by the
vibrational Hamiltonians ĥa and ĥb and is described
by the first two terms on the right-hand side (rhs) of
eq 9. The simulation of pump-probe and pump-
dump signals requires the explicit consideration of
the coupling to the external optical field, which is
given by the last term on the rhs of eq 9. The Condon
approximation was assumed, imposing a constant
transition dipole moment, and µ̂ac labels the elec-
tronic transition dipole moment. From eq 9, the
equation of motion for transition probability Pab
emerges:

where

The description of optical excitation processes within
the framework of Wigner distributions is represented
by eq 10. Due to the highly nonlinear derivatives with
respect to coordinates and momenta, this expression
is too complicated for practical calculations without
introducing further approximations.

Classical Limit and Weak Field. Using a p-ex-
pansion of the exponentials in eq 10 and restricting
to the lowest order, the “classical limit” is obtained.
In the case that statistically averaged quantities of
finite temperature are calculated, this expansion is
justified, as pointed out by Heller.342,343 Moreover,
this formalism allows for a systematic introduction
of quantum corrections to the classical behavior of
the system.

The coupling to the electromagnetic field can also
be simplified. The assumption that the field is weak
enough in intensity allows one to expand the Wigner
distribution in a perturbation series, written as Pab

) ∑i Pab
(i) , where the subscript i indicates the order in

the field. Therefore, in the “classical limit” and for
weak fields, the equations hold for the transition
probabilities (a * b):

and for the occupation densities (a ) b)

Assuming the initial conditions Pab
(0)(q,p,t)0) )

Pab
(0)(q,p) for the Wigner distributions, and

qa(t)0;qa0) ) qa0 and pa(t)0;pa0) ) pa0 for coordinates
and momenta, respectively, eqs 12 and 13 can be
iteratively solved

with the abbreviation Γ ) {q,p} and the definition
δ(Γ - Γa(t-t2;Γa0)) ≡ δ(q - qa(t-t2;qa0)) δ(p - pa(t-
t2;pa0)). The energy gap between the electronic states
a and b is given by the quantity Vab(Γ) ≡ ha(Γ) -
hb(Γ). By inserting eq 14 into eq 15, the final
expression for the occupation densities Paa of the
electronic state a reads

Equation 16 allows one to calculate time-dependent
optical spectra. In context with time-resolved spec-
troscopy with ultrashort laser pulses, a further

ip
∂F̂ab

∂t
) ĥaF̂ab - F̂abĥb - ε(t)∑
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[µadPda
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Paa
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1
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specification of the pulse by a Gaussian envelope ε(t)
) exp[-t2/2σ2] cos ωt centered around the laser
frequency ω can be introduced in eq 16. The product
of the laser pulses with short durations σ can be
approximated by

Using the variable transformation

in eq 17 and the rotating wave approximation (RWA),
the density distribution of eq 16 takes the following
form:

For short pulse durations σ the Gaussian
(exp[-τR

2/4σ2]) in eq 20 is strongly localized. Thus,
the upper limit t - τ1 of the integration variable τR
can be set up to infinity. This allows for an analytic
integration of the exponential part of eq 20, which
yields the Gaussian spectral distribution determined
by the pulse duration σ:

Equation 21 allows one to calculate more general
time-resolved optical signals which are determined
by the occupation density of the electronic states and
are not limited to the first-order fields (cf. also ref
340).

Assuming that the pump and the probe processes
are both of the first order in the fields, eq 21 can be
applied only twice (i ) 2) to calculate the occupation
densities P11

(2)(q,p,t) and P22
(2)(q,p,t) of states 1 and 2,

respectively. For the occupation of the probe state
P22

(2)(t), the following expression holds:

where dipole matrix elements are assumed to be
constant. The indices pu and pr label the correspond-
ing parameters of the pump and the probe field,
respectively, and td denotes the time delay.

Since the integration over the pump-probe cor-
relation function can be carried out explicitly,

the transient photoionization signal can be calculated
according to

For the pump-probe signal, the following informa-
tion is obtained from eq 24. At the beginning, the
system is prepared in the electronic ground state (0)
where the corresponding Wigner distribution P00-
(q0,p0) is assumed to be known (initial condition).
This initial phase space density is spectrally filtered
during the pump process into state 1 by the third
Gaussians of eq 24. Subsequently, the filtered en-
semble propagates on state 1 and is spectrally filtered
again during the delayed probe pulse into state 2.
This is expressed by the second Gaussians in eq 24.
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2
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It is important to notice that the Gaussian form of
spectra during the pump and probe process is a direct
consequence of both the classical approximation given
by eq 12 and the short time assumption expressed
by eq 17. The final time resolution of the signal is
determined by the pump-probe autocorrelation func-
tion given by the first Gaussians in the eq 24.
Equation 24 can also be used for calculation of the
pump-dump signal by replacing σpr by σdu, pωpr by
pωdu, and V21 by V01, which is the energy gap between
the ground and the excited electronic states.

In the framework of the Wigner representation, a
summation over an ensemble of initial conditions is
required. It can be naturally determined from the
initial vibronic Wigner distribution P00

(0) on the elec-
tronic ground state. For this purpose, the Wigner
distribution of a canonical ensemble in each of the
normal modes is computed. This allows one to include
temperature effects in correspondence with the ex-
perimental situations and to take into account the
quantum effects of the initial ensemble at low tem-
peratures.

In the analytic form of signals, given by eq 24,
quantum coherence effects are not taken into ac-
count, which is a consequence of the classical ap-
proximation. Thus, the signals can be simulated by
an ensemble of independent classical trajectories
where, of course, all anharmonic contributions are
fully included but quantum effects such as tunneling
or zero point energy are not incorporated. Classical
trajectories can be obtained either from precalculated
surfaces or from ab initio dynamics “on the fly”,
allowing one to carry out simulations for systems
with a relatively large number of degrees of freedom.

Quantum Corrections. To include the nonlocality
of quantum mechanics, a proposal335 has been re-
cently made to include the nonclassical interactions
between the members of the ensemble of trajectories,
giving rise to entangled trajectory molecular dynam-
ics.335,336 This involves a power series expansion of
the Wigner function Fw(q,p,t) to the third order (cf.
eq 6)

For the precalculated surfaces the third derivative
of the vibronic Hamiltonian for the given electronic
state is straightforward to obtain. For the dynamics
“on the fly”, the analytic formulation of the third
derivative in the framework of HF and MCSCF
methods is available,204 but their implementation and
application have not been accomplished yet. An
alternative approach has been introduced by the
quantum trajectory method based on the hydro-
dynamics formulation of quantum mechanics.344-348

It remains to show how these approaches can be
made computationally efficient for future applica-
tions.

3.2.2. Nonadiabatic Dynamics

To address nonadiabatic transitions in complex
systems involving avoided crossings and conical
intersections between electronic states, semiclassical
methods based on ab initio multistate nonadiabatic
dynamics are suitable for the simulation of fs pump-
probe signals. For this purpose, in addition to the
calculation of forces in the electronic ground and
excited states, the computation of coupled electronic
states “on the fly” in the adiabatic or diabatic
representation is required. Furthermore, the choice
of the approach to nonadiabatic dynamics must be
made. These ingredients can then be combined with
the Wigner-Moyal representation of the vibronic
density matrix which allows one to determine the fs-
signals. The electronic part, concerning ab initio
calculations of forces in the excited states and nona-
diabatic couplings, will be addressed in section 4.3
in the context of specific applications. The research
direction involving approaches to nonadiabatic dy-
namics deserves a separate review article (cf. ref 215).

Since we consider the systems with all degrees of
freedom, the most simple choice of treatment of the
nonadiabatic dynamics is limited either to the clas-
sical path methods or to surface hopping methods.349

They are characterized by problems arising from the
approximations that the trajectories propagate in the
mean potential or in the state specific potential,
respectively.350-352 In general, nonadiabaticity in-
volves changes in the population of adiabatic states
with changing nuclear configurations. In this way,
electronic distribution influences trajectories. The
simplest way to include such electron-nuclei feed-
back is to use the mean field (Ehrenfest) method. It
is assumed that the system evolves on an effective
potential which can be obtained as an average over
adiabatic states weighted by their state populations.
The problem with this approach is that the system,
which was prepared initially in a pure adiabatic
state, will be in a mixed state after leaving the
nonadiabatic region. Therefore, the adiabatic nature
of the involved states disappears even in the asymp-
totic region.215 Moreover, the microscopic reversibility
is not preserved (cf. ref 215). Improvement to the
Ehrenfest method is to include decoherence, assum-
ing that trajectories finish in a pure state after
leaving the region of coupled states. This is possible
by introducing the continuous surface switching
(CSS) procedure.218

In contrast, the basic feature of the surface hopping
methods is that the propagation is carried out on one
of the pure adiabatic states, which is selected accord-
ing to its population, and the average over the
ensemble of trajectories is performed. The molecular
dynamics with quantum transitions (MDQT) version
of the fewest-switches surface hopping method, as
introduced by Tully,349 is based on the assumption
that the fraction of trajectories on each surface is
equivalent to the corresponding average quantum
probability determined by coherent propagation of
quantum amplitude. Moreover, a choice between
adiabatic and diabatic representation has to be made.
In the former case, the nonadiabatic couplings have
to be calculated, and in the latter case, the overlap
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∂p3
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between the wave functions of two states is needed
in the framework of the method used for calculations
of the electronic structure. For example, the MD as
well as nonadiabatic couplings calculated “on the fly”
can be directly connected with MDQT and then used
to simulate fs-signals. Therefore, we briefly outline
the concept involving the adiabatic representation.

The time-dependent wave function Ψ(t,r,R), which
describes the electronic state at time t, is expanded
in terms of the adiabatic electronic basis functions
ψj of the Hamiltonian with complex valued time-
dependent coefficients

The adiabatic states are also time-dependent through
the classical trajectory R(t). Substitution of this
expansion into the time-dependent Schrödinger equa-
tion, multiplication by ψk from the left, and integra-
tion over r yields a set of linear differential equations
of the first order for the expansion coefficients which
are equations of motion for the quantum amplitudes:

Here εj are the eigenvalues of the Hamiltonian, and
〈ψk|∇R|ψj〉 are nonadiabatic couplings.

The system of eq 27 has to be solved simulta-
neously with the classical equations of motion for the
nuclei

where the force is the negative gradient of the
potential energy of the “current” m-th adiabatic state.
The hopping probabilities gij between the states are
determined by

and can occur randomly according to the fewest-
switches surface hopping approach introduced by
Tully.349 This approach has been designed to satisfy
the statistical distribution of state populations at
each time according to the quantum probabilities |ci|2
using the minimal number of “hops” necessary to
achieve this condition.

However, this internal consistency is not always
maintained, as analyzed in the literature.351 One of
the often noticed reasons for the internal inconsis-
tency in MDQT is the presence of classically forbid-
den transitions. The energy conservation is achieved
in MDQT during the transition by adjusting the
classical velocities in the direction of the nonadiabatic
coupling vector.349 The transition is classically forbid-
den if there is not enough velocity in this direction.
In this case, two alternatives are commonly used.
Either this component of velocity is inversed, or it
remains unchanged. The existence of classically
forbidden transitions may lead to an inconsistency
between the fraction of trajectories in each state and
the averaged quantum probability. Another reason

for the internal inconsistency in MDQT is the diver-
gence of independent trajectories. For example, in the
case that two surfaces substantially differ, the tra-
jectories on the lower state can diverge and follow
different pathways after leaving the nonadiabatic
coupling region. Since in standard MDQT the quan-
tum amplitudes are propagated coherently for each
trajectory, in the case that some trajectories diverge,
the coherent propagation can lead also to an incon-
sistency between the fraction of trajectories in each
state and the corresponding average quantum prob-
ability. The analysis of the reasons for these incon-
sistencies and the proposals for improving them can
be found in ref 351. The conclusion can be drawn
that, in order to obtain the time evolution of the
population, the fraction of trajectories is more reliable
than the averaged quantum probabilities. Thus, it is
better to use the fraction of trajectories for the
simulation of the pump-probe signals. Problems
with surface hopping methods are particularly pro-
nounced for systems involving an extended nonadia-
batic coupling region or when tunneling processes as
well as a large number of recrossings occur in this
region.

For the determination of the pump-probe signal
accounting for passage through the conical intersec-
tion, the expression for the cationic occupation P22

(2)

given by eq 22 has to be modified. This is due to
necessity in considering that the propagation of the
ensemble starts in the excited state but can hop to
the ground state according to the fewest-switches
hopping algorithm. Therefore, not only the common
averaging over the whole ensemble of the initial
conditions due to the Wigner approach is required,
but also, for a given initial condition, an averaging
over trajectories obtained from different random
numbers according to the hopping algorithm must
be carried out.116 Consequently, the coordinates and
momenta of the propagated state can be labeled by
qx

ν and px
ν, where x is either the excited or the

ground state, as determined by the hopping proce-
dure. The quantities ν numerate the set of random
numbers used in the hopping algorithm, satisfying
the same initial condition. Therefore, the average
over the number of hoppings Nhop has to be per-
formed, and for the cationic population the following
expression yields

which is a modification of eq 22 valid for the adiabatic
case. The quantity V+1,x labels the energy gap be-

Ψ(t,r,R) ) ∑
j)0

M

cj(t) ψj(r;R) (26)

ic̆k(t) ) ∑
j

[εjδkj - iR4 (t)‚〈ψk|∇R|ψj〉]cj(t) (27)

MR2 ) -∇REm(R) (28)

gij ) 2 ∆t
cici

/
[Im(ci

/cjεiδij) - Re(ci
/cjR4 〈ψi|∇R|ψj〉)] (29)

P22
(2)(t) ) ∫dq dp P22

(2)(q,p,t)

∼ ∫dq0 dp0 ∫0
t
dτ2 ∫0

t-τ2dτ1

1

Nhop

×

∑
ν

exp[-σpr
2

[pωpr - V+1,x(qx
ν(τ1;q0,p0))]

2

p2 ] ×

exp[-σpu
2

[pωpu - V10(q0,p0)]
2

p2 ] ×

Ipu(t-τ1-τ2) Ipr(t-τ2-td) P00
(0)(q0,p0) (30)
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tween the propagating state and the cationic state
at the instant of time. From this expression, the
pump-probe signal can be calculated after integra-
tion over the pump-probe correlation function
∫0

∞ dτ2 Ipu(t-τ1-τ2) Ipr(t-τ2-td) is performed explic-
itly:

According to expression 31, the initial ground-state
density P00

(0) is promoted to the first excited state
with the Franck-Condon transition probability given
by the last exponential of eq 31. The propagation, the
passing through the conical intersection, and the
probe transition to the cationic state are described
by the second exponential. This expression can be
generalized for more than two states by introducing
in eq 31 the sum of weighting factors corresponding
to the transition moments between the electronic
states involved, for which also time-dependent energy
gaps have to be calculated. The probe pulse window,
being located around the time delay td between the
pump and the probe pulses, and the resolution of the
signal determined by the square of the pulse dura-
tions are given by the first exponential. As it is
required in the Wigner distribution approach, an
ensemble average over the initial conditions has to
be performed. The latter can be obtained from a
sampling of the initial vibronic Wigner distribution
P00

(0) of the ground electronic state.
Of course, the basically inherent problems of

surface hopping methods can be overcome by using
other semiclassical formulations, for example, the
framework of stationary phase approximation,353,354

the linearized semiclassical initial value represen-
tation,221-223 the semiclassical multisurface hopping
propagator approach,355-357 the multiple spawning
method,226,358 the quantum-classical density matrix
approach involving a hybrid MD-Monte Carlo algo-
rithm with momentum jumps,359,360 and the semiclas-
sical multistate Liouville dynamics in diabatic and
adiabatic representations.216,220,361,362 The majority of
these methods is computationally more demanding
and so far is usually tested and applied on model
systems.

Quantum Corrections. Regarding the connection
with time-dependent quantum chemistry through
classical trajectories “on the fly”, it is of particular
interest to mention the semiclassical multistate
Liouville dynamics in diabatic and adiabatic repre-
sentations216,220,361,362 and the multiple spawning
method.226 Both approaches allow introduction of the
quantum effects in nonadiabatic dynamics.

In the case of the semiclassical limit of the quan-
tum Liouville equation for multistate electronic-
nuclear dynamics, this occurs by introducing addi-
tional time-dependent coefficients to each member of
the coupled ensemble. These additional dynamical
variables represent the time-dependent weights of
the trajectories, providing phases for the electronic
coherence. The formulation in the adiabatic repre-
sentation is particularly attractive because it can be
connected directly with the calculation of nonadia-
batic coupling “on the fly”.216,220,361,362 The results are
promising for accounting for coherence effects in the
semiclassical treatment of nonadiabaticity. Never-
theless, the applications on the realistic systems have
to be carried out in the future.

Full multiple spawning dynamics is a typical
approach with classical features but allows for ap-
proximate consideration of quantum mechanical ef-
fects, which means for the interaction of nuclear
populations of different electronic states. It makes
use of local properties of quantum chemistry, provid-
ing the potential energy and its derivatives for a
particular nuclear geometry, from which forces can
be calculated and used as locality in time, in classical
dynamics. The ab initio full multiple spawning
(AIMS) method is nonadiabatic wave packet dynam-
ics based on frozen Gaussians, originally introduced
by Heller,363 in which the calculations of electronic
states and nonadiabatic couplings are carried out “on
the fly”. In the total time-dependent wave function
in the framework of the Born-Oppenheimer ansatz

the nuclear wave function øk in a specific electronic
state k is a linear combination of multidimensional
traveling Gaussians with time-dependent coefficients
Cj

k(t), where j labels the nuclear basis function

The Gaussians Gj
k are, in turn, products of time-

dependent one-dimensional frozen Gaussians for each
degree of freedom. Using this ansatz, Hamilton’s
classical equations of motion for position, momentum,
and nuclear phase have to be solved. This allows one
to establish the connection between classical dynam-
ics and quantum chemistry. Finally, the nuclear
Schrödinger equation for the time-dependent coef-
ficients Cj

k(t) involves calculations of diagonal and
off-diagonal elements of the Hamiltonian matrix.
These include computation of multidimensional in-
tegrals and nonadiabatic couplings. Since both are
computationally very demanding, the approximations
described in ref 226 are generally used. The accuracy
of describing some quantum mechanical phenomena,
such as nonadiabaticity and tunneling, depends not
only on these approximations but also on the choice
of nuclear basis functions (e.g. trajectories) on each
electronic state; each of these is dressed by multidi-
mensional Gaussian functions. An important feature

S[td] ) lim
tf∞
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∼ ∫dq0 dp0 ∫0
∞
dτ1 exp{-
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2

σpu
2 + σpr
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exp{-
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2
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exp{-
σpu

2

p2
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2} P00
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ψk(r,R) øk(R;t) (32)

øk ) ∑
j
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k(t)Gj
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of this method is the possibility to extend nuclear
basis functions when it is needed, such as, for
example, according to the magnitude of nonadiabatic
couplings. This means that additional nuclear basis
functions are spawned only when the system goes
through the region of nonadiabatic couplings. This
allows for making the computational demand fea-
sible. Consequently, several interesting applications
in photochemistry have been achieved using this
method.226 The fast multiple spawning (FMS) method
is nevertheless more computationally demanding
than other approximate methods for the description
of nonadiabatic dynamics of large systems, such as
surface hopping approaches, Pechukas force meth-
ods,364,365 and mean field approximations. Systematic
comparisons of these approaches on realistic systems
still have to be carried out.

3.3. Full Quantum Mechanical Multistate Nuclear
Dynamics and fs-Signals

The methods for time-dependent quantum simula-
tions represent powerful quantitative tools for study-
ing and understanding dynamics of systems with few
atoms, provided that accurate precalculated global
potential energy surfaces (PESs) are available. The
computational aspects in solving the time-dependent
Schrödinger equation involve spatial discretization
of the wave function, action of the Hamiltonian on
the wave function, and propagation of the initial
wave function in time.366-369 The latter two allow one
to carry out discretization in time.

The grid representation is a widely used technique
for discretization of the wave function.368,369 The grid
has to include the whole wave function during the
time period investigated, and the number of points
has to be large enough to mimic the continuous
function. Consequently, the number of grid points
scales as MN where N is the dimension of the problem
and M is the number of grid points for each degree
of freedom. Therefore, the method is limited to
systems with few degrees of freedom. There are also
other efficient methods for spatial discretization
which will be not addressed here.370

Concerning the time discretization, the action of
the potential energy part of the Hamiltonian on the
wave function is simply a pointwise multiplication
over the spatial grid due to the fact that the potential
energy operator is local in coordinates. In the case
of the action of the kinetic energy operator on the
wave function, the Fourier method is a suitable
approach, since it makes use of the fact that the
kinetic energy operator is local in the reciprocal
momentum space. This allows transformation of the
wave function, employing a fast Fourier transform
algorithm in momentum space where the direct
multiplication can be carried out, after which an
inverse Fourier transform back to the coordinate
space is made.367-369 Finally, the time-dependent
wave function has to be evaluated according to the
Schrödinger equation

where, for the time-independent Hamiltonian, the

evolution operator Û(t) has a simple exponential
form. If Ĥ is time-dependent, then Û is defined as

To apply the evolution operator on the initial wave
function, the procedures for discretization of the
evolution operator have to be used which involve
different types of expansions. Those used mostly are
expansions into series of Chebyshev and so-called
local propagators, such as second-order differences
(SODs) or split-operator (S-O) methods.367-369

From this brief outline of the basis of quantum
dynamical algorithms, the conclusion can be drawn
that, for each additional degree of freedom, the
numerical operations in propagation increase by a
factor corresponding to the number of grid points
needed for an appropriate description of the given
mode. Moreover, the grid methods cannot be directly
connected with ab initio MD “on the fly” because they
make use of grid points from precalculated energy
surfaces. Both aspects are disadvantageous for con-
sideration of systems larger than four atoms or six
coupled modes.

fs-Signals. For the calculation of the pump-probe
signals using grid methods, we outline the procedure
for ultrashort pulses and weak fields for which first-
order perturbation theory is applicable.371 The system
is initially in the vibrational ground state ø0 with
energy E0 of the electronic ground state |0〉. The
vibrational dynamics in the electronic state |1〉 can
be observed by a time-delayed fs-excitation to the
electronic state |2〉, and detection of a fluorescence
signal or of a photoionization signal follows from state
|2〉.

The nuclear wave function ø1 of the electronic
excited state |1〉 can be written as

with U1 and U0 propagators for the nuclear motion
in the electronic states |1〉 and |0〉, respectively. The
interaction energy in the dipole approximation is

with the following labels: the dipole transition µ10
between states |0〉 and |1〉, the strength of the field
ε0, and the frequency ω1. G(t,T1) is the envelope
function centered around T1 and is therefore denoted
as Gaussian. By discretization of the integral given
by eq 36

one obtains

Ψ(t) ) Û(t) ψ(0) ) e-i/pĤtψ(0) (34)

Û(t) ) exp(-i/p∫0
t
Ĥ(t′) dt′) (35)

ø1(t) ) 1
i∫0

t
dt U1(t-t′) V10(t′,T1) U0(t′)ø0 (36)

V10(t,T1) ) -µ10ε0G(t,T1)e
-ω1(t-T1) (37)

ø1(t) ≈ ∆t∑
n)0

N

U1[(N - n)∆t]V10(n∆t,T1) U0(n∆t)ø0

(38)

ø1(t) ≈ ∑
n)0

N

anwn
(1) (39)
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where wn
(1) and an are weighting factors and ampli-

tudes, respectively.

and the rest is a weighting factor.
The expression (eq 39) for the excited-state wave

function is the coherent sum of µ10ø0 propagated for
different times (N - n)∆t on the excited state with
weighting factors wn

(1). An analogous expression
holds for the nuclear wave function ø2 in state |2〉
which arises from the absorption of a photon induced
by a fs-pulse with frequency w2 and field strength
ε′0, which is centered at T2 and starts at t ) 0:

with the interaction between the field and the system
given by V21(t′,T2). Since the pump and probe pulses
do not overlap, discretization leads to

Inserting the expression for ø1(m,∆t) given by eq 39
and defining the weight wm

(2) as

one obtains

Finally, the population in state |2〉 corresponding
to the signal is calculated according to

For details, see refs 371 and 372. The formulation
for pump-probe signals in terms of population of the
final state for the case that two electronic states are
coupled is given in ref 372.

4. Analysis of Dynamics and of Simulated
fs-Signals

4.1. Multistate Adiabatic Nuclear Dynamics in
Ground States and Simulation of NeNePo
Pump −Probe Signals: Noble Metal Clusters

Advances in experimental pump-probe fs-spec-
troscopy include application of vertical one-photon
detachment to prepare a nonequilibrium state of
clusters and subsequent investigation of its dynamics
by two-photon ionization. This technique is known
as NeNePo (negative ion-to-neutral-to-positive ion)
spectroscopy and was pioneered by Wöste and his
colleagues.175 Since dynamics in the ground state of
the neutral species can be explored, this approach

bridges cluster dynamics with the real time investi-
gation of chemical reactions.

fs-NeNePo spectroscopy is also attractive for theo-
retical investigation for the following reasons: it
requires development of methods for adiabatic ab
initio MD “on the fly” in the ground state and their
application for simulation of femtosecond signals; it
provides the opportunity to determine conditions
under which different processes and their time scales
can be observed; and therefore, it contributes to
establish the scope of this experimental tech-
nique.112,119,181,373 Concerning the first aspect, the
accuracy of electronic structure calculations, using
for example an ab initio gradient corrected density
functional approach with Gaussian atomic basis sets
for MD “on the fly” (AIMD-GDFT),79,280-283,293 and the
adequacy of the semiclassical Wigner distribution
approach for simulation of fs pump-probe signals
can be tested by comparing obtained results with
experimental findings and with the full quantum
mechanical treatment of the nuclei. The latter is
feasible for trimers.114 Second, by introducing experi-
mental conditions for simulation of fs-signals, their
influence on revealed processes can be examined.
Third, by varying the size and composition of clusters,
processes such as geometric relaxation, intracluster
collisions, IVRs, structural information based on
vibronic patterns, as well as isomerization processes
can be identified in the pump-probe signals, provid-
ing a conceptual frame for NeNePo spectroscopy. All
of these aspects will be illustrated with examples of
silver, gold, and mixed silver-gold clusters.

To do this, the electronic and structural properties
of noble metal clusters will be addressed first. Then
attention will be paid to MD “on the fly” and to the
simulation of signals, and finally, the analysis of
signals and comparison with experimental findings
will be presented, allowing for identification of pro-
cesses and for proposals of new experiments.

Electronic Structure. Structural, reactivity, and
optical properties of noble metal clusters attracted
theoretical43,82-88,91,92,109,117,119,181,374-376 and experi-
mental researchers24-28,375-384 over the years because
of their relatively simple electronic nature in com-
parison with that of transition metals and their
similarity to s-shell alkali metals. This is particularly
the case for the Ag atom because of a large s-d gap
in contrast to that of the Au atom. In the latter case,
the s-d gap is considerably smaller and, therefore,
the relativistic effects play an essential role, strongly
influencing the energy of an s-orbital, for example.
These differences in electronic structure are also
reflected in structural properties of small silver and
gold clusters. Recent theoretical and experimental
investigations showed that gold clusters remain
planar for larger sizes than do the silver clus-
ters.85,109,375,376 Increasing interest in gold and silver
clusters is due to their newly discovered size-selective
reactivity properties toward molecular oxygen and
CO.29,43,44,87,88,91,385,386 In this context, the mixed silver-
gold clusters have also attracted the attention of
researchers due to the electronegativity difference
between Ag and Au atoms85,384 giving rise to charge
transfer from Ag to Au. All together, the noble metal

an ) U1[(N - n)∆t]µ10ø0 (40)
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i∫0
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wm
(2) ) ∆tε′0G(m,∆t-T2)e

iω2(m∆t-T2) (43)

ø2(t) ≈ ∑
m)0

N

∑
n)0

m

wm
(2)wn

(1)U2[(N - m)∆t]µ21an

≈ ∑
m)0

N

∑
n)0

m

wm
(2)wn

(1)bmn (44)

P2(τ) ) lim
tf∞
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clusters represent an attractive research direction for
fs-chemistry.

Relativistic effective core potentials (RECPs) are
mandatory for a description of the studied species.
In general, effective core potential (ECP) methods
allow one to eliminate core electrons (close to nuclei)
from explicit electron correlation treatment, which
then involves only electrons directly participating in
bonding. Usually they were developed in the litera-
ture for the Hartree-Fock wave functions, and
therefore, they had to be revisited and carefully
tested in connection with the gradient corrected
density functional theory (GDFT) method.88 GDFT
is presently the method of choice for the ground-state
properties of metallic clusters provided that the use
of correlation and exchange functionals allows for
accurate determination of binding energies and struc-
tural properties, which is not always the case.88 This
is particularly important for a reliable calculation of
the energy ordering of different isomers which can
assume related or very different structures with close
lying energies. The presence of a number of isomers
for a given cluster size is an unpleasant characteristic
of metal clusters (alkali- as well as noble-metal
clusters). Therefore, determination of the lowest
energy structure is not always an easy task. Conse-
quently, the temperature is a crucial parameter
which has to be considered in experiment and theory.
Notice that only at low temperatures can the mixture
of different isomers be avoided, in contrast to the
cases at higher temperatures.

In the early work on structural and optical proper-
ties of neutral and charged silver clusters, 1- and 11-
electron relativistic effective core potentials (1e-
RECPs and 11e-RECPs) with corresponding AO basis
sets were developed.83,84,374 The first one, which was
later revisited in connection with the DFT method119

employing Becke and Lee, Yang, Parr (BLYP) func-
tionals287,288 for exchange and correlation, respec-
tively, is suitable for description of the ground-state
properties. The second one is inevitable for determi-
nation of excited states of pure silver clusters. Since
d-electrons are localized at the nuclei of silver atoms,
they almost do not participate in bonding. Their role
is only important for the quantitative determination
of energies of excited states in silver clusters. Recent
DFT calculations on structural properties using 19e-
RECPs and ion mobility experiments carried out on
Agn

+ clusters376 have confirmed the early findings.83,84

The 1e-RECP for the Au atom is less reliable for
studying structural properties of Au clusters because
the d-electrons participate directly in bonding. The
use of the 1e-RECP for gold clusters might be useful
only if the results agree with those obtained from the
19e-RECP, due to the fact that the former one is
computationally considerably less demanding. (For
details, see ref 85.) Moreover, for reactivity studies
involving oxidized clusters, the 19e-RECP is manda-
tory also for silver clusters due to the activation of
d-electrons by the p-electrons of the oxygen atom.43,88,91

Dynamics and Signals. To study fs-dynamics of
metallic clusters as a function of their size, the
precalculation of energy surfaces is not practicable
(although for trimers feasible). Therefore, the ab

initio MD approach “on the fly” is the method of
choice. Ab initio molecular dynamics codes, which
utilize a Gaussian atomic basis set and gradient
corrected density functional (AIMD-GDF),279-283 are,
in the meantime, implemented in standard programs
such as Gaussian309 or Turbomole.310 The investiga-
tion of dynamics of atoms is carried out by integration
of the classical equations of motion using the Verlet
algorithm (cf. eqs 1 and 2).290 The SCF Kohn-Sham
formulation and the accurate calculations of Pulay
forces (cf. section 3.1) are needed at each time step
in order to achieve a satisfactory conservation of the
total energy. It is important that all this occurs at
low computational demand, because the simulation
of pump-probe signal requires, in addition to the
calculation of an ensemble of trajectories for the
ground state of the neutral species, calculations of
the energy gaps between neutral and cationic ground
states. The accurate numerical evaluations of the
exchange-correlation energy parts of the Kohn-Sham
matrix and the exchange-correlation energy deriva-
tives are the most computationally demanding steps
if the number of AO basis functions is not extremely
large. Therefore, effort has been made to reach a good
accuracy at relatively low cost (cf. refs 279-283).

For the simulation of NeNePo signals, a combina-
tion of the ab initio molecular dynamics “on the fly”
with the vibronic density matrix approach in the
classical Wigner-Moyal representation offers an
adequate approach (cf. section 3.2.1). This involves
(i) the density of the anionic state forming the initial
ensemble, (ii) the density of the neutral state reached
after photodetachment by the pump, (iii) the density
of the cationic state after photoionization of the probe,
and (iv) the laser-induced transition probabilities
between the latter two states. Densities and transi-
tion probabilities can be calculated in the framework
of the classical approximation to the Wigner-Moyal
transformed Liouville equation for the vibronic ma-
trix by restricting the expansion to the lowest order
in p as outlined in section 3.2.1. In addition, only the
first-order optical transition processes can be taken
into account, which is justified for the low laser
intensities, as it is the case in the NeNePo technique.
Assuming zero kinetic energy (ZEKE) conditions for
the photodetached electron and for the cation, as well
as short laser pulses which can be well described with
Gaussian pulse envelopes, the analytic expression for
time-resolved NeNePo signals directly related to
expression 24 of section 3.2.1 can be straightfor-
wardly formulated:

Here σpu (σpr) and Epu ) pωpu (Epr ) pωpr) are the
pulse durations and excitation energies for the pump

S[td] ) lim
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2
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2 } ×

exp{-
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2

p2
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2} ×

exp{-
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p2
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2} P00(q0,p0) (46)

26 Chemical Reviews, 2005, Vol. 105, No. 1 Bonačić-Koutecký and Mitrić



and the probe step with the time delay td. The
quantity VIP(q1(τ1;q0,p0)) labels the time-dependent
energy gaps between neutral and cationic ground
states calculated at coordinates q1(τ1) on the neutral
ground state with initial coordinates and momenta
q0 and p0 given by the anionic thermal Wigner
distribution P00(q0,p0), and VVDE(q0) are the vertical
detachment energies of the initial anionic ensemble.
Therefore, the first step for the simulation of signals
involves the generation of P00(q0,p0), which can be
calculated either for individual vibronic states or for
the thermal ensemble assuming the harmonic ap-
proximation in the case of low or moderate initial
temperatures, for which the anharmonicities of nuclei
are negligible. Then, the Wigner distribution for each
normal mode is given by

with R ) tanh(pω/2kbT) and the normal-mode fre-
quency ω, corresponding fully to the quantum me-
chanical density distributions. The ensemble of initial
conditions needed for the MD on the neutral ground
state energies emerges from sampling of the phase
space distribution given by expression 47. For the
case of high temperatures, for which anharmonicities
are important but quantum effects of the initial
distribution are not, the phase space distribution can
be obtained from a sufficiently long classical trajec-
tory. The analytical expression for NeNePo signals
given by eq 46 is easy to understand. The last
exponential in eq 46 gives the Franck-Condon
transition probability after the initial ensemble is
photodetached. Then, the propagation occurs on the
neutral state in terms of MD “on the fly”, giving rise
to the time-dependent ionization energies VIP. The
transition to the cationic ground state involves the
probe step with a window function given by the
second exponential of eq 46. The signal is obtained
by the summation over the whole ensemble, and its
time resolution is determined by the pump-probe
correlation function with the probe window located
around the time delay between two pulses given by
the first exponential of eq 46. The spectral resolution
depends on the duration of both pulses.

However, expression 46 has to be modified if the
emitted electrons carry away some amount of kinetic
energy. Consequently, for the simulation of the trans-
ient photoionization NeNePo signal, the integrations
of the populations of the anionic and cationic states
over the entire range of possible excess energies E0
and E2 have to be carried out in order to provide an
approximate treatment of continuum. This leads to
the following expression of the NeNePo signals

Now the application of above outlined combination
of methods will be illustrated in order to demonstrate
the importance of the interplay between theory and
experiment.

4.1.1. Trimers

The example of silver and mixed silver-gold tri-
mers will be addressed in more detail because it
allows for identification of conditions under which the
separation of time scales of different processes can
be observed. Moreover, the theoretically proposed
concept can be verified by comparison with experi-
mental findings obtained under different conditions.
For this purpose, either the energy surfaces for the
ground state of trimers (for anions, neutrals, and
cations) can be precalculated (e.g. for Ag3)112,113 or ab
initio MD “on the fly” can be used (e.g. Ag2Au).119,181

In the former case, full CI calculations for valence
electrons were performed, and in the latter case, the
gradient corrected DFT procedure was employed.

Ag3
-/Ag3/Ag3

+. The global minima of the anionic,
neutral, and cationic silver trimers assume linear,
obtuse triangular, and equilateral trianglar struc-
tures, respectively. The location of the minimum of
the anion corresponds to a saddle point of the neutral
Ag3. The structural properties of the neutral Ag3 are
characterized by the Jahn-Teller effect, leading to
the threefold degenerate minima (cf. Figure 1). The
first electronically excited state 2A1 of the neutral Ag3
exhibits a surface crossing with the ground state 2B2.
Nonadiabaticity has not been considered in the
dynamics under the assumption that a sufficiently
large excess of energy after electron detachment
leading to the geometry relaxation in the ground
state of Ag3 will smear out the effects stemming from
coupling between two states.

In the experiment, a transient linear Ag3 cluster
has been prepared in its ground electronic state by
one-electron photodetachment of the linear Ag3

-. The
temporal evolution from the linear to triangular Ag3
has been investigated by a delayed ionizing pulse via
two photon ionization. The energy scheme of the
multistate dynamics for Ag3

-/Ag3/Ag3
+ is shown in

Figure 1. The Franck-Condon region and the mini-
mum energy region of Ag3 serve to determine the
excitation energies for the pump and probe lasers.
Pump pulse wavelengths in the range between VDE
) 2.45 eV and the continuum (2.95 eV e Epu e 3.13
eV) were employed. The values for Epr range from
the vertical ionization potential for the linear geom-
etry to the ionization potential for the triangular one
(6.67 eV e Epr e 5.73 eV). Since the influence of
temperature is important, the corresponding initial
conditions can be prepared (e.g. for T ) 50 K and T
) 300 K). For this purpose, an ensemble of coordi-
nates and momenta can be sampled at short time
intervals from a long microcanonical trajectory (e.g.
of 10 ps) obtained from the MD on the anionic ground
state. By rescaling the velocities, equilibration can
be achieved until the time averaged kinetic energy,
corresponding, for example, to T ) 50 and 300 K, can
be obtained. The Franck-Condon transition prob-
abilities in terms of abundances of VDEs between Ag3
and Ag3

- for both temperatures are shown in Figure

P(q,p) ) R
πp

exp[- 2R
pω

(p2 + ω2p2)] (47)

S[td] ) lim
tf∞

P22
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∞
dτ1 exp{-
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2
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2 + σpr

2 } ×

∫0

∞
dE2 exp{-
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2

p2
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2
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2. The maximum of the VDE is temperature inde-
pendent, since it corresponds to VDE ) 2.45 eV of
the linear geometry of the anion. The asymmetric
broadening for the 300 K ensemble arises from the
different energy behavior of anion and neutral species
along the bending mode. The simulated NeNePo-
ZEKE signals using two initial conditions at low and
at higher temperature corresponding to the entire
anionic initial ensemble are shown in Figure 3.112,113

The choice of duration of the probe pulse, σpr ) 100
fs, corresponds to usual experimental conditions.

The signals are shown for three probe energies,
corresponding to the Franck-Condon region (Epr )
6.5 eV), to the Jahn-Teller region of the neutral Ag3
(Epr ) 5.8 eV), and to an intermediate energy (Epr )
6.1 eV). The simulated signals for Epr ) 6.5 eV, close
to the Franck-Condon region, reflect the changes of
the vertical ionization energies due to geometric
relaxation from linear to triangular structures. The
time scales for the onset of intensity, for its maxi-
mum, and for a decrease of intensity are tempera-
ture-dependent (at higher temperature, time scales
are shorter due to higher velocities of the nuclei). For

Figure 1. Scheme of the multistate fs-dynamics for
NeNePo pump-probe spectroscopy of Ag3

-/Ag3/Ag3
+ with

structures and energy intervals for pump and probe
steps.112,113

Figure 2. Franck-Condon transition probabilities in
terms of abundancies of vertical detachment energies
(VDEs) of the Ag3

- anion at 50 and 300 K. The line shape
of a 100 fs Gaussian shape pulse at a pump energy of 2.44
eV has been plotted for T ) 300 K in order to illustrate
spectral filtering.112,113 Reprinted with permission from ref
112. Copyright 1998 American Institute of Physics.

Figure 3. Simulated NeNePo-ZEKE signals (σpu ) 0 fs,
σpr ) 100 fs) for 50 and 300 K and for Epr ) 6.5, 6.1, and
5.8 eV (upper part). Bunches of trajectories of the 50 and
300 K ensembles projected on a Qx (bending) and Qs
(symmetric stretching) contour plot of the cation-neutral
energy gap surface (values of 6.5 and 5.8 eV are indicated)
(middle part). Comparison between simulated (T ) 300 K)
and experimental NeNePo signals112,113 for energies of the
probe pulse of 5.9 and 6.00 eV (bottom part).
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Epr ) 5.8 eV, close to the Jahn-Teller region of Ag3,
the rise and fall of signals occur at considerably later
times.

To elucidate the nature of these signals occurring
after the geometric relaxation was accomplished, the
bunches of trajectories projected on the contour plot
for the bending mode and the symmetric stretching
modes of the cation-neutral energy gaps are shown
also in Figure 3. They allow for the straightforward
identification of the IVR induced by a sudden energy
transfer from the bending to the stretching mode due
to a strong repulsion of the terminal atoms (intrac-
luster collision) for Epr ) 5.8 eV. It can be seen that
the system moves along the 5.8 eV contour line with
an almost constant IP for the low temperature case.
For T ) 300 K the ensemble exhibits a spatial spread
after the intracluster collision, since both bending
and stretching modes are simultaneously excited.
This leads to a lower intensity of the signal in the
IVR time domain than in the case of low tempera-
tures. At longer times, the analysis shows that
dissipative IVR results in vibrational equilibration.
In conclusion, Figure 3 reveals that the geometric
relaxation and IVR can take place in Ag3 on different
time scales if probed by appropriate energies. These
time scales can be influenced by the temperature of
the initial ensemble.

The continuum of energy for the detached electron
and for the probed cation will be addressed, since it
corresponds closer to the original experimental NeNe-
Po conditions. For the 300 K initial ensemble, the
simulated signals according to eq 48 are compared
with the recorded ones in the lower part of Figure 3.
The clear distinction between the geometric relax-
ation and IVR, which was identified in NeNePo-
ZEKE signals, is smeared out under the influence of
continuum. The simulated signals are in good agree-
ment with the experimental ones, confirming that the
experimental conditions do not allow one to distin-
guish different processes such as geometric relaxation
from IVR.

Ag2Au-/Ag2Au/Ag2Au+. The above findings stimu-
lated new experiments at low temperature in the
initial photodetachment step and with conditions
closer to the NeNePo-ZEKE situation which were
performed on the mixed trimer. This allows one to
study also the influence of the heavy atom on the
time scale of fs-processes. The doping of the silver
trimer by one gold atom gives rise to the following
structural properties: the anionic trimer assumes the
linear structure with one Au-Ag heterobond. The
isomer with two heterobonds lies 0.38 eV higher in
energy. Both linear structures are transition states
for the neutral Ag2Au, which assumes acute trian-
gular geometry, while the obtuse triangle is the
minimum for the cation. Each transition state inter-
connects two symmetry equivalent triangular struc-
tures and has two imaginary frequencies along the
degenerate bending mode. Notice that the structural
properties of mixed trimers are sensitive to the
details of the methodological treatment (choice of
RECP and of functionals in the DFT procedure).
Therefore, the inclusion of d-electrons in the RECP
is necessary for quantitative considerations. The

energetic scheme relevant for NeNePo together with
the structural properties of neutral and charged Ag2-
Au is shown in Figure 4.

For the simulations at the initial temperature of
20 K, only the most stable isomer is populated. Under
these conditions, the harmonic approximation is
valid, and therefore, the initial conditions for the MD
simulations can be safely sampled from the canonical
Wigner distribution at each independent normal
mode using eq 47. Accordingly, the histograms of the
vertical detachment energies (VDEs) (or Franck-
Condon transition probabilities) assume an almost
Gaussian shape centered around 2.78 eV. To simulate
NeNePo signals, an ensemble of trajectories (e.g.
∼500) has to be propagated in the neutral state, and
the time-dependent energy gaps to the cationic state
have to be calculated along the trajectories. They are
shown in the upper part of Figure 5, since they
provide information about the time evolution of
individual processes such as the onset of geometrical
changes and IVR. Within the first 2 ps, the swarm
of energy gaps changes from 7.5 to 6.5 eV, and
subsequently, all energy gaps oscillate in the energy
interval between 6.1 and 6.5 eV, corresponding to
vibrational dynamics within the basin of triangular
Ag2Au. The minimum energy gap value of ∼6.1 eV
marks the closest approach of the terminal silver and
gold atoms, which is referred to as an internal
collision within the cluster. Therefore, by adjusting
the probe-pulse energy, two different types of pro-
cesses can be probed in NeNePo-ZEKE signals. Pulse
energies between 6.5 and 7.5 eV probe the onset of
relaxation processes. Therefore, the signals should

Figure 4. Scheme of the multistate fs-dynamics for
NeNePo pump-probe spectroscopy of Ag2Au-/Ag2Au/Ag2-
Au+ with structures and energy intervals for pump and
probe steps.119,181
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exhibit maxima at delay times when the probe energy
is resonant with energy gaps and decrease to zero at
later times. Pulse energies below 6.5 eV probe the
arrival of and dynamics at the triangular structure.
It is to be expected that, at ∼6.1 eV pulse energies,
the signal will rise after ∼2 ps and remain constant
at later times. This is illustrated also on the left side
of Figure 5, in which the theoretical NeNePo-ZEKE
simulated signals are compared with recently ob-
tained experimental results at low temperature (T
∼ 20 K) for two probe energies, Epr ) 7.09 eV probing
the Franck-Condon region and Epr ) 6.10 eV probing
the triangular geometry region corresponding to the
minimum of the neutral Ag2Au.181 Experiment and
theory are in excellent agreement. The signals at Epr
) 7.09 eV reflect geometric relaxation from linear to
triangular geometry of the neutral Ag2Au. The sig-
nals at Epr ) 6.10 eV are due to IVR.

Insight into the IVR can be gained from an analysis
of the single-trajectory example, shown on the right-
hand side of Figure 5. At times t < 2.0 ps, the three
vibrational modes contain very little energy according
to the envelope of their kinetic energy oscillations.
This is because the system is located in the flat region
of the PES where the bond angle is larger than 90°.
In this region, the potential energy is high but can

be viewed as a constant offset, which is not available
for the vibrational modes. The small envelopes of the
kinetic energy oscillations are almost constant, im-
plying only very little IVR in this time domain. At
times t > 2.0 ps, the system enters the deep part of
the potential well so that the kinetic energy of all
modes increases. At t ) 2.3 ps, the kinetic energy in
the bending mode reaches a sharp maximum. Shortly
after the bending mode has passed its maximum
kinetic energy, its kinetic energy drops to zero due
to internal collision of peripheral atoms. Since the
other mode energies increase at the same time, IVR
is manifested. The drop of the kinetic energy in the
bending mode cannot solely be explained by a con-
version of kinetic to potential energy in the bending
mode. Since this behavior is also characteristic for
other trajectories, one can generally state that no-
table IVR sets in at the instant of internal collision.
This means that the nature of IVR is related to the
one found for Ag3 (cf. refs 112 and 113). Two
important aspects should be emphasized. Time scales
are much longer than in the case of Ag3 due to heavy
atom influence. Importantly, the experimental re-
sults reveal for the first time geometric relaxation
separated from an IVR process, indicating that they
are close to the ZEKE-like conditions, which has been

Figure 5. (upper part) Bunch of the cation-neutral energy gaps of Ag2Au. Energies of 7.09 eV (dashed line) and of 6.1
eV (full line) indicate the proximity of the Franck-Condon region and of the minimum of the neutral species, respectively,
and are used for simulations of signals. (lower part) Comparison between simulated and experimental NeNePo-ZEKE
signals of Ag2Au-/Ag2Au/Ag2Au+ (ref 181) (left side). Single-trajectory example of the evolution of the Ag-Ag-Au bond
angle and of the kinetic energy in the three vibrational normal modes (right side).

30 Chemical Reviews, 2005, Vol. 105, No. 1 Bonačić-Koutecký and Mitrić



proposed by theory as a necessary condition for the
separation of time scales of these processes.181

Notice that, in the above simulations, quantum
coherence effects are not taken into account as a
consequence of the classical approximation for the
nuclei. This corresponds to the situations for which
the signals can be simulated by an ensemble of
independent trajectories where all anharmonicities
are included but quantum effects are not incorpo-
rated. Therefore, in the case of Ag3

-/Ag3/Ag3
+, it is

valuable to compare the simulated signals, based on
full quantum mechanical treatment of the dynamics
of the nuclei employing the grid method for wave
packet propagation,114 with those obtained from
classical trajectory simulations using the same en-
ergy surfaces.112,113 The signals obtained from both
methods for low temperature exhibit very similar
features, as shown in Figure 6. They only differ in
the relative intensities for geometric relaxation ver-
sus IVR. As expected, in the full quantum mechanical
treatment, the IVR process is more delocalized than
that in the classical treatment, giving rise to the
lower intensity of the signal responsible for the IVR
process, as shown on the right-hand side of Figure
6.

4.1.2. Tetramers

To illustrate the scope of the NeNePo technique,
two examples, Ag4 and Au4, have been chosen for the
presentation because they exhibit different structural
properties in the anionic state and common proper-
ties in the neutral state. In the case of the silver
tetramer, the global minima of the anion and of the
neutral cluster assume related rhombic structures.
Therefore, after photodetachment at low tempera-
tures (T ≈ 50 K), ensuring thermal distribution
around the rhombic geometry, the pump step reaches
the nonequilibrium rhombic configuration close to the
global minimum of the neutral species, as shown on

the left side of Figure 7. Notice that the initial
temperatures which prevent the isomerization within
the anionic state are mandatory, since the well
defined initial state is a necessary condition to
observe time scales and processes involved in the
geometric relaxation of the neutral ground state. This
condition does not allow one, for example, to monitor
the isomerization into the T-form in the neutral
ground state, since for this purpose an initial tem-
perature of more than 700 K is needed, at which an
isomerization in the ground anionic state would
already occur. Consequently, for the low-temperature
T ) 50 K initial conditions, the probe in the Franck-
Condon region with Epr ) 6.41 eV reveals the
vibrational structure of the rhombic configuration
after photodetachment. For the probe with, for ex-
ample, Epr ) 6.46 eV, the dynamics in the vicinity of
the neutral rhombic structure can be monitored. The
simulated NeNePo-ZEKE signal at 6.41 eV for a
probe duration of 50 fs shown in Figure 7 exhibits
oscillations with a vibrational period of ∼175 fs,
which is close to the frequency of the short diagonal
stretching mode, indicating the occurrence of the
geometric relaxation along this mode toward the
global minimum. The analysis of the signal also
reveals contributions from two other modes shown
in Figure 7. In summary, the above example il-
lustrates that an identification of the structure of a
gas-phase neutral cluster in experimental NeNePo
signals is possible due to its vibronic resolution.119

In contrast, the investigation of nuclear dynamics
and simulation of NeNePo-ZEKE signals of Au4 allow
one to follow long amplitude motions leading to
isomerization because the stable structures of Au4

-

and Au4 assume linear (or closely related zigzag
geometry) and rhombic forms, respectively.119 Low-
temperature initial conditions (T ≈ 50) ensure that
only the linear anionic structure contributes to the
initial ensemble which is photodetached by the probe
pulse, as shown in the scheme presented in Figure
8. The two-photon ionization or probe laser covering
the energy range between ∼8.4 and 8.1 eV monitors
the initiated relaxation dynamics on the neutral state
involving linear, T-form, and rhombic isomers (cf.
Figure 8).

Relaxation dynamics is influenced by the linear
local minimum of the neutral species which is ener-
getically reached after the photodetachment. The
signal at Epr ) 8.86 eV, shown in Figure 8, reflects
dynamics within the local linear isomer reached after
photodetachment. It is characterized by oscillations
corresponding to one of the symmetric stretching
modes which is responsible for a nondephased relax-
ation process of the initial nonequilibrium ensemble.
The intensity of the signal decreases after 1 ps,
indicating occurrence of the relaxation process from
linear to rhombic structure. Consequently, both
signal intensities at Epr ) 8.09 eV and Epr ) 8.27 eV
increase, reflecting the appearance of other isomers.
A temporary identification of the rhombic structure
at Epr ) 8.09 eV is possible only through a small
maximum. Otherwise, structureless line shape indi-
cates the presence of both rhombic and T-form
isomers due to a large internal vibrational energy.

Figure 6. (left side) Comparison of full quantum dynamics
and semiclassical simulated NeNePo-ZEKE signals of Ag3

-/
Ag3/Ag3

+. (right side) Comparison of the wave packet (a)
and bunches of trajectories (b) projected on Qx (bending)
and Qs (symmetric stretching) contour plots of the neutral
PES.114
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It is interesting to point out that the absence of
dephasing during the relaxation dynamics in the
vicinity of the nonequilibrium state reached after
photodetachment is the signature of the local mini-
mum which has a different influence on the dynamics
than the transition state does, for example in the case
of Ag3 and Ag2Au.

Summary. Finally, the following question can be
raised: what can be learned from multistate-ground
state dynamics and from simulated NeNePo-ZEKE
signals in general? First, the connection between
three objectives can be established: the structural
relation of anionic and neutral species, the influence
of the nature of the nonequilibrium state reached
after photodetachment, and the subsequent character
of dynamics in the neutral ground state. Three
different situations can occur in which the (i) transi-
tion state, (ii) global minimum, and (iii) local mini-
mum can influence the dynamics after photodetach-
ment. Second, different types of relaxation dynamics
can be identified in NeNePo-ZEKE signals, which
means that these processes can be, in principle,
experimentally observed.

(i) In cases where the anionic structure is close to
a transition state of the neutral electronic ground
state (e.g. trimers), large amplitude motion toward
the stable structure dominates the relaxation dy-

namics. In other words, the dynamics is incoherent
but localized in phase space. IVR can be initiated as
a consequence of the localized large amplitude mo-
tion. Large amplitude structural relaxation after the
transition state (as occurs in the case of Ag3 and Ag2-
Au) is responsible for a pronounced single peak in
NeNePo-ZEKE signals at a given time delay and
probe excitation wavelengths. In addition, subse-
quent IVR processes can be identified, but only under
ZEKE-like conditions.

(ii) In cases where the anionic structure is close to
the global minimum (stable isomer) of the neutral
electronic ground state, vibrational relaxation reflect-
ing the structural properties of the neutral stable
isomer (e.g. Ag4) takes place. The dynamics can be
dominated by one mode (e.g. Ag4) or only by a few
modes given by the geometric deviations between
anionic and neutral species. Other modes and an-
harmonicities weakly contribute, leading to dephas-
ing on a time scale up to several picoseconds (>2 ps
for Ag4). Vibrational relaxation gives rise to oscilla-
tions in NeNePo signals (for different pulse dura-
tions) which can be analyzed in terms of normal
modes. Since the stable structure is characterized by
the corresponding normal modes, this offers the
opportunity to identify structural properties of gas-

Figure 7. (left side) Scheme of multistate fs-dynamics for NeNePo pump-probe spectroscopy of Ag4
-/Ag4/Ag4

+ with
structures and energy intervals for the pump and probe steps. (top right side) Simulated NeNePo-ZEKE signals for the 50
K initial condition ensemble (bottom right side) at the probe energy of 6.41 eV and a pulse duration of 50 fs. Normal
modes responsible for relaxation leading to oscillatory behavior of the signal are also shown (middle right side).119
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phase clusters experimentally by the NeNePo tech-
nique.

(iii) In cases where the anionic structure (initial
state) is close to a local minimum (energetically high
lying isomer) of the neutral electronic ground state
(e.g. Au4), the character of the nonequilibrium state
is governed by the local minimum. Vibrational re-
laxation within the local minimum is likely to domi-
nate the ultrashort dynamics (on a time scale <1 ps
for Au4). Nondephased regular vibrational relaxation
has been shown in the case of Au4, where the
pronounced activation of only one stretching mode
takes place, since the normal modes of the anionic
and neutral species are almost identical.

Moreover, the local minimum can act as a strong
capture area for nuclear motion with time scales up

to several picoseconds. As a consequence, isomeriza-
tion processes toward other local minima and/or
toward the global minimum structure are widely
spread in time. In other words, structural relaxation
dynamics is characterized as being incoherent and
delocalized in phase space. Signals exhibit (at differ-
ent excitation wavelengths of the probe laser) fin-
gerprints for vibrational relaxation within the local
minimum, providing structural information. After
systems escape from the local minima, the time scales
for the beginning of structural relaxation can be
identified by the onset of signals at given probe
wavelengths (≈1 ps Au4), although the relatively
structureless signals of low intensity can reflect the
delocalized character of the structural relaxation.

Figure 8. (top left side) Scheme of the multistate dynamics for NeNePo pump-probe spectroscopy of Au4
-/Au4/Au4

+ with
structures and energy intervals for the pump and probe steps. (right side) Simulated NeNePo-ZEKE signals for the 50 K
initial condition ensemble (bottom left side) at different probe energies.119
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Due to the aspects listed above, the NeNePo
technique in connection with the optimal control
schemes represents a promising technique to intro-
duce the control of the chemical reactivity of clusters,
such as oxidation of CO by noble metal oxide clusters,
which is of relevance for heterogeneous catalysis.

4.2. Multistate Adiabatic Nuclear Dynamics
Involving Electronic Excited and Ground States
and Simulation of Pump −Probe and Pump-Dump
Signals: Nonstoichiometric Alkali Halide Clusters

As briefly outlined in section 3.1 on time-dependent
quantum chemistry, ab initio MD “on the fly” in
excited states can be carried out in the framework
of various wave function based or density functional
based methods. The interplay between accuracy and
computational demand still does not allow applica-
tions to arbitrarily chosen systems. Nevertheless,
high accuracy and low computational demand can be
achieved by an adequate choice of systems for which
the description of the excited states is simple and for
which the semiclassical approach to dynamics is a
suitable approximation. In this case, the simulations
of the signals based on the ab initio Wigner distribu-
tion approach described in section 3.2 offer a valuable
method which allows one to describe and to discover
different ultrafast processes, as will be illustrated
below.

4.2.1. Sodium Fluoride Clusters with One Excess Electron

The structural and optical properties of non-
stoichiometric alkali halide clusters have attracted
the attention of many theoretical and experimental
researchers100-102,104,124,125,387-412 due to the localiza-
tion of the excess electrons, which are not involved
in ionic bonding. The prototypes for a particularly
simple situation concerning the description of excited
states are nonstoichiometric sodium fluoride clusters
with a single excess electron, for example, NanFn-1.
In this case, a strong absorption in the visible-
infrared energy interval occurs due to the excitations
of the one excess electron placed in a large energy
gap between occupied (HOMO) and unoccupied
(LUMO) one-electron levels which resemble the
“valence” and the “conductance” bands in infinite
systems. Therefore, these clusters offer the opportu-
nity to investigate optical properties of finite systems
with some bulk characteristics such as F-color cen-
ters. Moreover, a simple but accurate description of
the excited states is possible to achieve in the
framework of the one-electron “frozen ionic bonds”
approximation. In this method the optical response
of the single excess electron can be explicitly consid-
ered, but in the field of the other (n - 1) valence
electrons involved in strongly polar ionic Na-F
bonding.

The calculation of excited-state energies and of
gradients based on the “frozen ionic bonds” ap-
proximation (as outlined in Appendix A) is, from a
computational point of view, considerably less de-
manding in comparison with other approaches, such
as RPA, CASSCF, or CI methods, and provides
comparable accuracy. Therefore, this approach allows

one to carry out adiabatic molecular dynamics in the
excited state, by calculating the forces “on the fly”
(cf. Appendix A) applicable to relatively large sys-
tems. This is particularly convenient for the simula-
tion of time-dependent transitions for which an
ensemble of trajectories is needed. Moreover, the fast
computation of nonadiabatic couplings “on the fly”
also allows one to carry out nonadiabatic MD as
outlined in Appendix B. Of course, the application is
limited to systems for which the “frozen ionic bonds”
approximation offers an adequate description.

On the basis of ab initio classical trajectories and
assuming Gaussian femtosecond envelopes for the
laser fields, analytic expressions for the time-resolved
pump-probe and pump-dump signals in the frame-
work of the Wigner distribution approach have been
formulated in section 3.2.1. This ab initio Wigner
distribution approach to adiabatic dynamics will be
used in this section to illustrate the scope of the
approach on examples of NanFn-1 clusters, first for
those sizes for which adiabaticity is valid.

Na2F versus Na4F3. These systems have been
chosen for presentation of adiabatic dynamics in their
first excited states. The corresponding simulated

Figure 9. (top) Optically allowed transitions Te in elec-
tronvolts and oscillator strength fe obtained from the one-
electron “frozen ionic bond” approximation for the stable
ground-state structures of Na2F and Na4F3 clusters.115

(bottom) Contour plots of the transition density from the
ground state to the first excited state, 12A1 f 12E, defined
as D0n ) ∫F0n(r)R dâ with R * â ) x, y, z, where F0n(r) )
∫ψ0(x1,...,xm) ψn(x1,...,xm) dσ1 dx2 ... dxm facilitates com-
parison with fe ∼ |∫F0n(r)R d3r|2 ) |∫D0n dR dγ|2 in the (z,y)-
plane for the C3v structure of the Na4F3 cluster. Solid and
dashed lines label positive and negative values, while long-
dashed lines indicate nodal curves. The crosses indicate
the positions of the atoms corresponding to the geometry.
Reprinted with permission from ref 115. Copyright 2001
American Institute of Physics.
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pump-probe and pump-dump signals serve to ad-
dress time scales of processes of different nature as
well as methodological aspects. Despite the common
absorption properties of both clusters shown in
Figure 9, dynamics in the excited state is character-
ized by very different processes.115 Metallic bond
breaking occurs in the case of Na2F. In contrast, just
geometric deformation takes place in the case of
Na4F3 without bond breaking which leads to relax-
ation of the cubic structure with the corner defect (cf.
Figure 9). Therefore, from the time scale obtained for
the breaking of the metallic Na-Na bond in Na2F,
the analogy concerning the time scale for breaking

of delocalized bonds in metallic clusters can be
drawn. Similarly, from time scales determined for
localized lattice-defect relaxation after excitation in
Na4F3, an analogy to dynamical behavior of F-centers
in the bulk can be made. Moreover, classical versus
quantum mechanical dynamics can be tested on the
example of Na2F, while the Na4F3 cluster serves as
an adequate example for a moderately complex
system for which the treatment of all degrees of
freedom is computationally easy to achieve.

The vertical spectra obtained in the framework of
the “frozen ionic bonds” approximation are shown in
Figure 9. Using the same electronic structure ap-

Figure 10. (A) Pump-probe NeExPo scheme for Na2F involving the ground state (Ne), the electronic excited state (Ex),
and the cationic ground state (Po). (B) Comparison of theoretical and experimental results:120 (a) bunch of energy gaps
between the first excited state of Na2F and the cationic ground state during the dynamics in the first excited state; (b)
simulated pump-probe signal; (c) experimentally observed transient. The involved cluster structures are shown in the
top panel. (C) Temperature-dependent (T ) 50 K) initial conditions; histogram of transition energies between the first
excited state and the ground state.
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proach (for details cf. ref 115), ab initio MD “on the
fly” for excited electronic states can be performed and
combined with the Wigner-Moyal representation of
the vibronic density matrix, as outlined in section
3.2.1. Such an ab initio Wigner distribution approach
to adiabatic dynamics allows for simulation of pump-
probe signals using eq 24.

In the case of Na2F, after vertical excitation, the
conformational change in the first excited state
occurs starting from the triangular ground state
geometry and leading to the linear structure. Con-
siderable lowering of the energy in the excited state
occurs as shown in Figure 10A. A relatively small
energy gap between the ground state and the first
excited state is a consequence of an avoided crossing,
obtained by breaking the Na-Na bond and over-
shooting the linear geometry connecting two equiva-
lent triangular geometries. Despite the avoided cross-
ing, the nonadiabatic coupling is weak and, therefore,
adiabatic dynamics can be performed. In fact, this
has been done by first using the ab initio Wigner
distribution approach combined with the “frozen ionic
bonds” approximation without precalculations of
energy surfaces.115,120 Later the quantum mechanical
grid method for the propagation of nuclei in combina-
tion with precalculated energy surfaces based on the
correlated wave function approach124 was used.

The simple approach will be presented first. As the
starting point, generation of a temperature-depend-
ent initial Wigner phase space distribution on the
neutral ground state is needed. A canonical thermal
ensemble at a given temperature is suitable for low
temperatures at which a harmonic approximation
holds (cf. eq 47). This initial ensemble has to be
brought to the first excite state with a Franck-
Condon transition probability, involving the excita-
tion energies from the neutral ground state to the
first excited state as shown in Figure 10C. The
propagation of this ensemble on the first excited state
involves classical trajectory simulations. The probe
window includes the time-dependent energy gaps
between the cationic and the neutral excited states,
taken at the propagated coordinate (cf. Figure 10B-
a). The calculation of the signal requires a summation
over the entire phase space (cf. Figure 10B-b).

The results presented in Figure 10B are based on
simulations using an ensemble of 300 classical tra-
jectories at an initial temperature of 300 K, which
corresponds to experimental conditions.120 The theo-
retically and experimentally obtained results are
given in Figure 10B. The pulse duration and laser
wavelength used in the experiment and in simula-
tions are also shown in Figure 10B. The probe
wavelength of 3.06 eV corresponds to the minimum
of the first excited state with the linear geometry,
as can be seen from Figure 10A. From the bunch of
time-dependent energy gaps shown in Figure 10B-a,
the periodic relaxation dynamics with a period of
≈185 fs can be identified. The maxima correspond
to the bent structure, and the minima to the linear
structure. At large times, anharmonicities in the
bending mode introduce aperiodicity. Because the
energy gaps are essential for determination of fs
pump-probe signals, the oscillations in the simulated

signal have the same period of 185 fs, as can be seen
from Figure 10B-b. Since the linear geometries are
probed for an ionization energy of 3.06 eV, they give
rise to maxima in the signal. The periodic feature of
the signal allows identification of the structural
rearrangements from the triangular to the linear
geometry during the butterfly type relaxation dy-
namics in the first excited state of Na2F. This occurs
due to the breaking of the Na-Na metallic bond, but
the strong Na-F ionic bonds remain almost intact,
which does not allow for fragmentation to take place.
The period of 185 fs corresponds to half of the bending
normal-mode frequency in the first excited state.
Therefore, oscillations can be assigned primarily to
the bending mode. Consequently, the IVR is very
small, since the stretching modes do not significantly
contribute. This means that the time scale for metal-
lic bond breaking is ∼90 fs. A recorded transient
Na2F ion signal is shown in Figure 10B-c. The
comparison of the theoretical pump-probe signal
(Figure 10B-b) obtained from the ab initio Wigner
distribution approach, combined with MD “on the fly”
using the “frozen ionic bonds” approximation, with
the experimentally obtained transient (Figure 10B-
c) shows very good agreement. Both exhibit oscilla-
tions with a period of 185 fs, corresponding to a
periodic butterfly-like rearrangement between bent
and linear and back to bent geometries in the excited
state due to the photoinduced metal bond breaking.120

It is important to notice that theoretical predictions115

have initiated the experimental work which con-
firmed predicted findings and, consequently, concep-
tually confirmed the proposed simple theoretical
approach. In fact, theoretical results on Na2F based
on quantum mechanical dynamics and precalculated
energy surfaces124 fully support the theoretical re-
sults presented in Figure 10. Therefore, the conclu-
sion can be drawn that excited-state dynamics in the
framework of the “frozen ionic bonds” approximation,
combined with the Wigner distribution approach, is
capable of accurately describing processes on the
femtosecond time scale for larger systems. This is
particularly important if a selection of very few active
modes for explicit treatment is not possible, since the
precalculation of energy surfaces is, for all degrees
of freedom, not realistic. This will be illustrated with
the example of Na4F3.

For Na4F3 the optically allowed vertical transition
to the first excited state with high intensity occurs
due to fully localized excitation at the site of the
halide vacancy. The geometric relaxation in the first
excited state toward the minimum leads to the
moderate lowering of the energy as shown in Figure
11. The energy gap between the ground state and the
first excited state minimum is considerably larger
than that in the case of Na2F. This is due to the fact
that no bond breaking occurs in the Na4F3, so that
the energy of the ground state does not increase
strongly.

The dynamics in the first adiabatic excited state
“on the fly” for all degrees of freedom allows deter-
mination of time scales of geometric relaxation and
of IVR for the optical excitation of the single excess
electron localized at the corner defect of the cuboidal
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structure.115 The pump-probe and pump-dump
scheme is presented in Figure 11 with energies and
structures of the minima in the ground state (A) and
the first excited state (B). The structure of the
minimum in the excited state is the strongly de-
formed “cage” of the cuboidal structure. The energy
lowering from the vertical transition to the minimum
of the excited state and the energy gaps between the
ground state and the excited state for two different
structures (B and C) are shown in Figure 12.

The Franck-Condon profile corresponding to the
abundance of the energy gaps between the first
excited state and the ground state for a 30 K initial
ensemble is shown in Figure 13. This ensemble
serves as an initial condition for the investigation of
the dynamics in the first excited state. For the
characterization of the ensemble dynamics, the
bunches of energy gaps between the first excited state
and the ground state are shown in Figure 12, since
these quantities enter into the expression for the
pump-dump signal. Regular cage oscillations can be
monitored and are reflected in the periodical change
of the gaps. However, for times beyond 1 ps, the
periodicity is distorted due to the energy redistribu-
tion in other modes. This becomes clearly evident in
the simulated pump-dump signals shown in Figure
14 for which the modified eq 24, as described in
section 3.2.1, can be used.

The results of simulations are shown for three
different dump laser energies: (i) Edu ) 1.2 eV is close
to the Franck-Condon region; (ii) Edu ) 0.6 eV
corresponds to the transition energy in the minimum
of the first excited state; and (iii) Edu ) 0.8 eV

corresponds to an intermediate value. They allow one
to reveal different types of IVR, as illustrated in
Figure 14.115 The time between the first maxima of

Figure 11. Scheme of the multistate fs-dynamics for the
pump-probe NeExPo and the pump-dump NeExNe spec-
troscopy of Na4F3.115 Thick arrows indicate dynamics on
the first excited state starting from the initial cuboidal
structure (A) toward the minimum energy “open cage”
structure (B) including the even more deformed structure
(C). Reprinted with perimission from ref 115. Copyright
2001 American Institute of Physics.

Figure 12. Bunch of energy gaps between the first excited
state and the ground state of Na4F3 during the dynamics
on the first excited state with the corresponding geometries
obtained for the 30 K initial temperature.115 Reprinted with
perimission from ref 115. Copyright 2001 American Insti-
tute of Physics.

Figure 13. Histograms of the transition energies between
the first excited state and the ground state of Na4F3 for a
30 K initial temperature ensemble.115 Reprinted with
perimission from ref 115. Copyright 2001 American Insti-
tute of Physics.
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the signals calculated for Edu ) 1.2 eV and Edu ) 0.6
eV corresponds to the geometric relaxation time from
the initially cuboidal structure (A) to the minimum
of the first excited state (“cage” structure (B)). This
amounts to <100 fs, indicating a very fast configu-
rational relaxation. Furthermore, both the Edu ) 1.2
eV signal and the Edu ) 0.8 eV signal exhibit strong
oscillations with a period of 260 fs. Therefore, these
signals are sensitive to dynamical processes con-
nected with the cage opening mode. In particular, the
amplitudes of the maxima of the Edu ) 1.2 eV signal
(cf. Figure 14) are decreasing during the time evolu-
tion of the system, which indicates that reverting to
the cuboidal structure is less often accomplished from
one oscillation period to the other. The reason for this
is the restricted energy leaving IVR of the cage
opening mode. From the decrease of the signal, one
can roughly estimate the time scale for this type of
IVR to be about 1 ps. In contrast, the average
amplitudes of the oscillations of the Edu ) 0.8 eV
signal remain almost constant. This indicates that a
somewhat constant part of the phase space volume
oscillates periodically above the minimum structure
(B). However, the modulation of the oscillations in
the Edu ) 0.8 eV signal is due either to anharmonicity
of the cage opening mode or to resonant IVR which
arises from the coupling of the other modes to the
still dominant cage opening mode. The “minimum-
region” signal (Edu ) 0.6 eV) is aperiodic after 1 ps,
and the intensity increases significantly, indicating
that the phase space occupation in the minimum of
the first excited electronic state (open cage structure
(B) in Figure 11) rises during the propagation caused

by the energy flow into this region. This restricted
energy arriving IVR differs from the one-mode selec-
tive energy leaving IVR of the cage opening mode.
The former cannot be attributed to one specific
vibrational mode, in contrast to the latter one.
Consequently, the time scales of both IVR processes
are different. However, as can be seen from Figure
14, the simulation time of 2 ps is too short in order
to determine the time scale for the restricted energy
arriving IVR. It is important to notice that, although
the system has fifteen degrees of freedom, no features
of dissipative IVR are present during the propagation
time of 2 ps and at low initial temperatures. This
analysis of the restricted IVR processes may be useful
for the development of mode selective control mech-
anisms of these or similar systems with metallic-
ionic and metallic-covalent bonds.

4.2.2. Sodium Fluoride Clusters with Two Excess
Electrons

For the accurate description of excited electronic
states and exploration of ultrafast processes in
sodium fluoride clusters with two excess electrons
(e.g. NanFn-2), the electron correlation treatment of
two electrons which are not involved in the ionic
bonding is mandatory. The leading features of their
electronic properties are closely connected with the
structures they assume. For structures in which two
excess electrons are delocalized, dominant transitions
appear in the visible regime, similar to the cases of
pure metallic species. For structures in which two
excess electrons are more localized, the intense
transitions are located in the infrared regime, simi-
larly as for F-centers. The corresponding prototypes
of excited states have been found for the planar C2v
deformed rhombic structure of the Na3F (isomer I),
which belongs to the “metallic” class, and for the 3D
trigonal pyramid (isomer II) (cf. Figure 15) with the
F atom capping the Na3 subunit, giving rise to the
structure with less metallic character, respec-
tively.100,102 Recent experimentally obtained absorp-
tion spectra of Na3F412 confirm previous theoretical
predictions.100,102 In Figure 15 comparison between
experimental and theoretical findings allows one to
assign the planar rhombic structure of Na3F to the
measured features. The theoretical results shown in
Figure 15 have been obtained using TD-DFT calcula-
tions with the gradient corrected Perdew-Burke-
Erznerhof (PBE) functional (cf. section 2.1).411 This
shows that the TD-DFT method provides reasonable
accuracy for the excited states of Na3F compared with
the full-CI results for two electrons, shown also in
Figure 15, or with MRD-CI results from the early
work.100,102

Therefore, the TD-DFT procedure represents the
solid basis for molecular dynamics “on the fly” in
excited states of this system, provided that the
multireference description (which is not needed for
vertical transitions) remains unnecessary at the time
scale of ultrafast processes. In fact, semiclassical
simulations of the pump-probe signals have been
performed in the framework of the ab initio Wigner
distribution approach described in section 3.2.1 in
order to compare them with available experimentally

Figure 14. Simulated NeExNe pump-dump signals of a
30 K initial temperature ensemble of Na4F3 at different
dump energies (Edu).115 Reprinted with perimission from
ref 115. Copyright 2001 American Institute of Physics.
Assignment of structures to minima and maxima of signals
indicate the time scales of geometric relaxation. Different
types of IVR are indicated.
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recorded spectra. For this purpose, an ensemble of
trajectories was propagated on the third excited state
of the 11B1 symmetry (corresponding to the experi-
mental probe energy) by solving the classical equa-
tions of motion. Forces were calculated “on the fly”
in the framework of the TD-DFT method with the
PBE functional and using an analytic formulation of
the excited-state energy gradients.211,212 The elec-
tronic excitation into the 11B1 state induces geometric
relaxation, which involves an oscillatory motion of
the F-atom along the C2 symmetry axis. The snap-
shots of the atomic positions at different times after
the pump-pulse excitation for 200 trajectories are
shown in Figure 16. As the initial condition, an
ensemble corresponding to the temperature 50 K was
generated by sampling the canonical Wigner distri-
bution function in the harmonic approximation.125

After 187 fs, the system reaches the configuration in
which the Na-F-Na subunit is almost linear (cf.
Figure 16), while, after 335 fs, the phase space
density branches into two distinct parts. The larger
part becomes reflected from the barrier which sepa-
rates the C2v structure from the pyramidal local
minimum and oscillates back to the initial configu-
ration with a period of ∼320 fs. A smaller part of the
phase density remains trapped in the basin corre-
sponding to the pyramidal structure due to the flow
of energy from the initially excited bending mode
along the C2 axis into other normal modes.

This periodical rearrangement is reflected in the
pump-probe signal. Figure 17A shows the energy
difference between the 11B1 state and the cationic
ground state as a function of time for 200 trajectories.

As can be seen from eq 24, this quantity serves as a
detection mechanism for the ultrafast vibrational
dynamics; whenever this energy gap is smaller than
the probe excitation energy, the system can be
ionized, leading to an increase in the ion signal,
which is shown in Figure 17B. To illustrate the
connection between the dynamics and the pump-
probe spectra, the times of the snapshots in Figure
16 were chosen in correspondence with the maxima
and minima of the simulated ionization signal.
Although the dynamics on the short time scale
involves primarily the excitation of three totally
symmetric normal modes, the classical simulations
involving all degrees of freedom show that at later
times also the nontotally symmetric modes start to
participate in the dynamics, leading eventually to the
breaking of some of the Na-Na bonds.125

A comparison between the experimentally mea-
sured pump-probe ion signal of Na3F and theoretical
simulations using the Wigner distribution approach,
considering all degrees of freedom together with a
quantum dynamical wave packet propagation in
reduced dimensionality, is shown in Figure 17B.
Assuming the constraint of the C2v symmetry, three
internal coordinates were used for the quantum wave
packet propagation. Using a probe wavelength of 2.05
eV, the signals obtained from both theoretical ap-
proaches show strong oscillations, which are in good
agreement with the experimental result,412 for which
ωpu ) 2.43 eV and ωpr ) 2.04-2.08 eV were used.125

Figure 15. Comparison between experimental412 (a) and
theoretical411 spectra (b and c) of Na3F. Finite temperature
absorption spectrum obtained from Monte Carlo simulation
performed at 300 K (full line) and the TDDFT absorption
spectrum (dashed line) obtained from a Lorentzian convo-
lution of the vertical lines (b) for the rhombic isomer and
(c) for the pyramidal isomer. Figure 16. Snapshots of the atomic positions (F, +; Na,

O) propagated classically on the 11B1 state for different
times after the pump excitation.125
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Despite small differences in the periods of the
theoretical signals, both theoretical approaches agree
upon the basic mechanism that is responsible for the
observed oscillatory behavior. The signal reflects the

ultrafast dynamics induced by the pump pulse which
excites the rhombic structure of the cluster within
the lower part of the 11B1 state absorption band,
causing a motion of the fluorine atom between
outside and inside positions of the triangle formed
by the three Na atoms. The ionization potential is
smaller than the probe laser pulse at geometries
corresponding to the fluorine atom being between two
Na atoms. Therefore, the probe pulse can ionize the
cluster, leading to the observed signal (cf. Figure
17B). After the fluorine atom has entered the Na3
triangle, it rebounds and crosses the detection point
a second time, arriving at almost the same geometry
as in the case of the Franck-Condon transition (cf.
Figure 16). The subsequent peaks in the ion signal
correspond to the fluorine atom vibrating between
these two geometries before it is trapped by IVR
within the Na3 triangle. For short times, the oscil-
lations in the theoretical pump-probe signals are in
very good agreement with the experimental ones. At
later times, however, the simulated pump-probe
signals remain constant while the experimental
signal decays to zero. This is an indication that, at
later times, other dynamical processes, such as
relaxation via nonadiabatic transitions (not included
in the simulations), play a significant role and
eventually lead to depopulation of the 11B1 state. This
example illustrates that the Wigner distribution
approach combined with MD “on the fly” based on
the TD-DFT method provides the necessary accuracy
for simulation of fs-signals and is applicable for
systems with more degrees of freedom than the
quantum mechanical propagation is able to handle.125

This is true if the clusters do not contain very light
atoms and if a sufficiently accurate description of the
electronic properties is included.

4.3. Multistate Nonadiabatic Dynamics Involving
Electronic Excited and Ground States:
Simulation of Pump −Probe Signals

The breakdown of the Born-Oppenheimer ap-
proximation, due to avoided crossings or conical
intersections between two electronic states, and
consideration of nonadiabatic couplings and nona-
diabaticity have been addressed in sections 3.1 and
3.2.2, for time-dependent quantum chemistry and
nonadiabatic dynamics, respectively. The analytic
expressions for the fs-signals involving nonadiabatic
dynamics in the framework of the semiclassical
Wigner distribution approach have been derived in
section 3.2.2.

For this purpose, ab initio MD for at least two
electronic states, as well as calculation of nonadia-
batic couplings “on the fly”, is needed if the adiabatic
representation has been chosen.116 Moreover, the
connection between the analytic formulation of the
first-order nonadiabatic couplings and one of the
procedures for the treatment of nonadiabaticity must
be established. In section 3.2.2 the MDQT, based on
Tully’s stochastic fewest switches procedure349 (eqs
26-29), has been outlined, and eq 31 can be used for
the simulation of pump-probe or pump-dump sig-
nals involving nonadiabatic dynamics using the
Wigner distribution approach. The disadvantages of

Figure 17. (A) Bunch of the energy gaps between the 11B1
excited state of Na3F and the cationic state during the
dynamics in the 11B1 state. (B) Comparison between
theoretical pump-probe spectra of Na3F obtained (a) from
a semiclassical approach (combination of TDDFT and
Wigner distribution approach) for all degrees of freedom
and (b) from a quantum mechanical treatment for reduced
dimensionality and (c) experimentally obtained signals.125,412
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Tully’s surface hopping approach and of the classical
treatment of nuclei, which excludes the treatment of
coherence effects, have also been addressed in section
3.2.2. However, in many systems involving radia-
tionless isomerization processes through conical in-
tersection from the first excited state, the quantum
effects are washed out due to a high excess of energy,
resulting in the high-temperature situation. In such
cases, despite this limitation, the approach described
above is reliable and practicable. It provides full
information about underlying ultrafast processes
from the analysis of the simulated signals, as will
be shown for the example of the Na3F2 cluster.

4.3.1. Photoisomerization through Conical Intersection in
the Na3F2 Cluster

The investigation of the nonadiabatic dynamics at
the conical intersection between the first excited state
and the ground state separating two isomers of Na3F2
(cf. Figure 18) offers an excellent opportunity to
simulate fs pump-dump signals at a high level of
accuracy. It also allows one to identify time scales of
different ultrafast processes, including different kinds
of bond breaking as well as radiationless transitions.
For this purpose, it is adequate to use the combina-
tion of the Wigner-Moyal representation of the
vibronic density matrix and ab initio multistate
molecular dynamics in the ground state and in the
first excited state without precalculation of energy
surfaces, including the computation of the nonadia-
batic couplings “on the fly”. Analogous to adiabatic
dynamics, an analytic formulation of nonadiabatic
coupling in the framework of the “frozen ionic bonds”
approximation, valid for nonstoichiometric alkali
halide clusters with one excess electron which are
used for calculation of nonadiabatic couplings “on the
fly”, is outlined in Appendix B.

At the same time, study of the dynamics in the first
excited state of Na3F2 and the radiationless transition

to the ground state allows for the prediction and
verification of consequences of conical intersections
in fs pump-probe signals in the gas-phase without
the necessity to consider the environment. The latter
complicates the issue, such as, for example, in the
case of photochemistry in solution or in the case of
the cis-trans photoisomerization of the visual pig-
ment due to the influence of the protein cavity.413,414

Therefore, the photoisomerization in the Na3F2
cluster will be addressed in full complexity. First, the
optical response (absorption spectra) and structural
properties of the ground state and the first excited
states of Na3F2 will be presented. Then, the conical
intersection will be characterized. Finally, dynamics
involving the passage through the conical intersection
will be addressed, and simulated signals will be
analyzed.

Optical Response Properties. The absorption
spectra obtained for both isomers of Na3F2 using the
“frozen ionic bonds” approximation (cf. Appendix A)
are shown in Figure 18 and compare well with those
calculated taking into account all valence electrons.100

The lowest energy isomer I, with the ionic Na2F2
subunit to which the Na atom is bound (forming Na-
Na and Na-F bonds), gives rise to the low energy
intense transition in the infrared. This is a common
feature found for NanFn-1 clusters due to the localized
excitation of the one-excess electron, as addressed in
section 4.2.1. In contrast, the transition to the first
excited state of isomer II (C2v) with the Na3 subunit,
which is bridged by two F atoms, has a higher energy
close to the energies of transitions usually arising
from excitations in metallic subunits. After the
vertical transition at the geometry of isomer I, the
geometric relaxation in the first excited state takes
place, involving a breaking of the Na-Na bond
leading to the first local minimum of the excited state
(cf. Figures 19 and 20, structure A) with a moderate
lowering of the energy. Afterward, the relaxation
process proceeds to the absolute minimum with the
linear geometry (cf. Figures 19 and 20, structure B),
corresponding to the conical intersection, for which
a further considerable decrease of energy takes place.
The linear geometry of the conical intersection is also
reached after vertical transition to the first excited
state at the geometry of the second isomer with C2v
structure. Therefore, the investigation of the dynam-
ics in the first excited state involves the breaking of
metallic and ionic bonds starting from isomer I and
just metallic bonds starting from isomer II, as well
as the passage through the conical intersection.

As a consequence, one expects strong thermal
motions within the ensemble, leading to phase space
spreading and IVR. All processes can be monitored
by a second ionizing probe pulse with excitation
energies between ∼2.9 and ∼4.8 eV, as shown by the
scheme given in Figure 19. The first value is close to
the initial Franck-Condon transition region and
probes the relaxation dynamics on the first excited
electronic state before the branching process due to
the conical intersection occurs. The latter value
allows one to monitor the processes involved in the
ground-state dynamics after passage through the
conical intersection.

Figure 18. (top) Pump-probe scheme for the conical
intersection. (bottom) Absorption spectra for two isomers
(I and II) of Na3F2 obtained from the one-electron “frozen
ionic bond” approximation.116
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Conical Intersection. The algorithm introduced
by Robb et al.415 is very useful for the determination
of the lowest energy structure and the energy at the
intersection seam (cf. Figure 20) as well as for
analyzing the topology of the intersection in the space
spanned by the internal degrees of freedom. The
results obtained for the linear geometry of Na3F2,
which has N ) 10 internal degrees of freedom, show
that displacements in 8 out of the 10 directions
almost do not change the energetic separation of the
surfaces, while displacements in the orthogonal plane
characterized by two directions, X1 and X2, strongly
remove the energy degeneracy. X1 is the gradient
difference vector, and X2 involves the coupling vector
between the two states. In other words, the ground-
state reaction pathways starting in the plane X1X2
connect the excited-state reactants with the two
ground-state products. Thus, the intersection of the
ground state and the first excited state has the shape
of a double cone, with respect to X1 and X2, where
the apex spans an eight-dimensional hyperline along
which the energy is degenerate. The intersection
seam is therefore (N - 2) dimensional, as is charac-
teristic for conical intersections.

The analysis of the wave functions of the ground
state and the first excited state in the close neighbor-

hood of the conical intersection yields positive and
negative linear combinations of two “valence-bond-
like” structures: Na+-F--Na+-F--N• ( Na•-F--
Na+-F--Na+. One of them contributes dominantly
to the ground state, and the other one contributes to
the first excited state, thus giving rise to two states
with different symmetries. The location of the excess
electron is indicated by the dot above the sodium
atom. Of course, at the point of the conical intersec-
tion, the arbitrary linear combination of the above
“valence bond” (VB) structures is possibly due to
degeneracy. The two VB structures differ in the
translocation of the single excess electron or of the
charge from one end to the other of the linear system.
In other words, the length of the linear chain is
sufficiently long to allow for an energy gap closing,
in analogy to the dissociation limit of the H2

+

molecule for which the degeneracy of the ground state
and the excited state occurs due to equal energies of
the H•-H+ and H+-H• structures. This means that,
in the case that the linear molecule is not sufficiently
long to minimize the repulsion, avoided crossing will
take place, as occurs in Na2F, which turns into the
conical intersection for Na3F2. In other words, the
presence of the conical intersection in the latter case
through which the isomerization process can take
place is the consequence of the electronic structure
properties. Therefore, due to general characteristics,
it can be found for other systems by designing the
analogous electronic situation.

In fact, the analogy can be drawn to conical
intersections found in organic photochemistry involv-
ing biradicaloid species, which are generated by
partial breaking of double heterobonds due to geo-

Figure 19. Scheme of the multistate fs-dynamics for
NeExPo pump-probe spectroscopy of Na3F2 including the
conical intersection with structures and energy intervals
for the pump and probe steps.116

Figure 20. (top) Structures corresponding to the local
minimum (with a broken Na‚‚‚Na bond) and to the global
minimum (linear) on the first excited state of Na3F2.
(bottom) Sketch of the conical intersection between the first
excited state (Na3F2

/) and the ground state characterized
by the two vectors X1 and X2 together with the structures
of the isomers and of the conical intersection and their
relative energies.116
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metric relaxation in the singlet excited states. The
condition for the occurrence of conical intersections
in so-called “critical biradicals” has been formulated
in the framework of the two-orbital, two-electron
model and can be fulfilled in the case that the
electronegativity difference between the two centers
is sufficient to minimize the repulsion between the
ground state and the excited states.317 This occurs
in the protonated Shiff bases by twisting of the
chromophore H2C-N+H2 bond, leading to cis-trans
isomerization. In this case, the ground and excited
states at the conical intersection are characterized
by “VB” structures H2C•-N•+H2 and H2C+-N••H2,
which differ in translocation of charge from one
center to the other of the chromophore.317 In fact, it
has been confirmed experimentally that the conical
intersection is responsible for the cis-trans isomer-
ization of the retinal chromophore in the vision
process.413,414

However, investigation of the nonadiabatic dynam-
ics through the conical intersection of the Na3F2
cluster has advantages. The system has 10 degrees
of freedom and permits the calculation of an en-
semble of trajectories based on the accurate ab initio
description of the excited and ground electronic states
and on the corresponding MD. Thus, it provides the
conceptual framework for fs-observables, such as fs
pump-probe signals, which will be addressed below.

Nonadiabatic Dynamics. In the framework of
the “frozen ionic bonds” approximation, all requested
ingredients, such as gradients of energies as well as
nonadiabatic couplings, are available. They have
been formulated in Appendices A and B and can be
straightforwardly inserted in eqs 26-29 and used for
the nonadiabatic dynamics “on the fly” (e.g. passage
through the conical intersection).116

To obtain initial conditions, a canonical thermal
ensemble of 50 K can be determined by the Wigner
distribution function of the electronic ground state
including all normal modes ωi, i ) 1, ..., 10, of the Cs
structure, corresponding to the total minimum of
energy according to eq 47. The set of, for example,
100, initial conditions can be obtained by sampling
the Wigner distribution function with respect to the
coordinates q0 and momenta p0, which can be used
for the classical trajectory simulations on the first
excited state of Na3F2. The finite temperature of 50
K causes thermal deviations from the energy mini-
mum Cs structure. These have been characterized by
the histogram of the abundances of the energy gaps
between the first excited electronic state and the
ground state, corresponding to the Franck-Condon
transition probabilities shown in Figure 21. The
maximum corresponds to the energy gap value
between the ground state and the first excited state
at the Cs structure of Na3F2.

Important aspects of analysis of the nuclear dy-
namics will be addressed first. The simulation of the
classical trajectory ensemble, consisting of a large
number of sampled phase space points, can be started
on the first excited electronic state. The geometric
relaxation (over the local minimum) toward the linear
structure corresponding to the conical intersection
and its passage as well as the subsequent relaxation

dynamics on the electronic ground state can be
visualized by considering the phase space density of
the cluster ensemble shown in Figure 22 for different
propagation times. At the beginning, t ) 0 fs, the
phase space density is localized, corresponding to the
Cs structure (cf. Figure 22). During the subsequent
∼90 fs, the distance between the Na-Na atoms
elongates, indicating the bond breaking between both
sodium atoms, and corresponds to a local minimum
on the first excited state (cf. Figure 22). Consecutive
ionic bond breaking between the Na and the F atoms
of the Na2F2 subunit can be observed after 220 fs (cf.
Figure 22) together with a small delocalization of the
phase space density. After ∼400 fs, the region of the
conical intersection corresponding to the linear struc-
ture is reached (cf. Figure 22). This triggers the
branching of the phase space density from the excited
electronic state to the ground state. At this stage, the
system gaines an additional kinetic energy of ∼0.67
eV. Due to this large vibrational excess energy, strong
anharmonicities between the vibrational modes are
present, which are responsible for the phase space
spreading. The subsequent relaxation dynamics on
the electronic ground state is characterized by an
even larger phase space spreading, particularly after
800 fs. This is due to the fact that the vibrational
excess energy rose to ∼1.3 eV, which corresponds to
an equilibrium temperature of ∼3400 K (cf. Figure
22). However, despite increasing phase space spread-
ing, structural information of the cluster ensemble
can be gained up to a propagation time of ∼800 fs by
considering the center of mass positions of the atomic
phase space distributions in Figure 22. In particular,

Figure 21. Franck-Condon transition probabilities in
terms of abundances of the energy gaps between the first
excited electronic state and the ground state of Na3F2 for
a 50 K initial temperature ensemble.116 Reprinted with
perimission from ref 116. Copyright 2001 American Insti-
tute of Physics.
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the “center of mass geometry” at 800 fs is close to
the C2v structure. However, due to the phase space
spreading, there are also considerable deviations, and
even geometries close to the Cs structure are involved
in the phase space distribution of the cluster en-
semble. As shown below, one can obtain detailed
information about the ratio between these structures
as well as energetic distributions in the cluster
ensemble from pump-probe signals. For times be-
yond 1 ps, no structures can be identified in the phase
space distribution. The ensemble is geometrically
completely delocalized at least up to the propagation
time of 2.5 ps, which is understandable due to the
large vibrational excess energy.

In summary, the dynamics through the conical
intersection represents an elementary physical event
for the cluster ensemble in the sense that it initiates
the transition from structurally and energetically
localized behavior involving consecutive metallic and
ionic bond breaking processes to delocalized behavior.
Thus, the molecular dynamics might be divided into
a reversible and an irreversible part separated by the
passage through the conical intersection.

Pump-Probe Signals. Simulations of signals are
based on eq 31, with energy gaps obtained from the
classical trajectory simulations using the fewest
switching surface hopping algorithm (eqs 26-29) for
the ensemble at an initial temperature of 50 K (eq
47). To obtain comprehensive information on the
dynamical processes of Na3F2, a zero pump pulse
duration (σpu ) 0) is suitable, which involves a
complete excitation of the ground-state ensemble
prepared at the initial temperature. The ultrafast
structural relaxation processes involving the bond
breaking can be resolved using a probe pulse duration
of 50 fs. The simulations of the signals are shown
for four different excitation energies (wavelengths)
of the probe pulse in Figure 23:

(i) Epr ) 2.8 eV and Epr ) 3.0 eV correspond to
transition energy values between the first excited
state and the cationic state at the time of the Na-
Na metallic and the Na-F ionic bond breaking,
respectively (cf. Figure 19). Thus, the signals for the
above transition energies provide information on the
structural relaxation involving the bond breaking
processes in the first excited state of Na3F2 before
the conical intersection is reached. In fact, they
exhibit maxima at ∼90 and ∼220 fs (cf. Figure 23),
in agreement with the time scales for the metallic
and ionic bond breaking obtained from the analysis

Figure 22. Snapshots of the phase space distribution
(PSD) obtained from classical trajectory simulations based
on the fewest-switches surface hopping algorithm of a 50
K initial canonical ensemble.116 Na atoms are indicated by
green circles and F atoms by red crosses. (a-c): Dynamics
on the first excited state starting at the Cs structure (a)
over the structure with a broken Na-Na bond (b) and,
subsequently, over a broken ionic Na-F bond (c) and
toward the conical intersection region (d). (d-f): Dynamics
on the ground state after branching of the PSD from the
first excited state leads to strong spatial delocalization. The
C2v isomer can be identified at ∼800 fs in the center-of-
mass distribution (f).

Figure 23. Simulated NeExPo pump-probe signals for
the 50 K initial temperature Na3F2 ensemble at different
excitation energies of the probe laser monitoring the
geometric relaxation on the first excited state involving
bond-breaking processes and passage through the conical
intersection as well as geometric relaxation and IVR
processes on the ground state after the passage (left side).
The isomerization through the conical intersection is
schematically illustrated on the right-hand side.
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of the phase space distribution shown in Figure 22.
Both signal intensities decrease rapidly after 0.4-
0.5 ps, indicating the branching of the phase space
density from the first excited electronic state to the
ground state due to the conical intersection.

(ii) Epr ) 4.3 eV and Epr ) 4.8 eV (cf. Figure 19)
correspond to transition energies between the ground
state and the cationic state at the Cs geometry and
the C2v geometry, respectively. In such a way, the
signals shown in Figure 23 monitor the ratio of both
isomers in the phase space distribution after the
passage through the conical intersection up to a time
delay between pump and probe of ∼1 ps. This time
represents the limit up to which structural informa-
tion can be resolved in the phase space distribution
(cf. Figures 22 and 23). For larger time delays, the
signals provide only information about the energetic
redistribution, thus the IVR. In fact, the intensities
of both signals start to increase after ∼0.4 ps, since
the ground state becomes populated, providing the
time scale for the passage through the conical inter-
section (cf. Figure 23). Furthermore, the signal at Epr
) 4.8 eV exhibits a maximum at 0.8-0.9 ps, indicat-
ing the larger ratio of the C2v structure in cor-
respondence with the results obtained from the phase
space distribution (cf. Figure 22). This signal drops
rapidly after 0.9 ps, and the signal at Epr ) 4.3 eV
increases, indicating that the Cs structure is more
populated at 0.9-1.0 ps (cf. Figure 23). The latter
also exhibits oscillatory features beyond 1 ps, corre-
sponding to the IVR regime. This leads to the
conclusion that a somewhat periodic energy flow is
present in the cluster ensemble. However, due to the
high vibrational excess energy, these oscillations
cannot be attributed to particular normal modes.

In summary, these results provide information
about the system in full complexity. They show that
different ultrafast processes, which are initiated by
the Franck-Condon pump pulse transition to the
first excited electronic state, are involved in the
dynamics of the Na3F2 cluster. These include geo-
metric relaxation, consecutive bond breaking of me-
tallic and ionic bonds, passage through the conical
intersection, and IVR processes.116 Moreover, the
time scales of these processes can be identified in the
pump-probe signals, and each of them can be
selectively monitored by tuning the probe excitation
energy. However, to populate only one of the isomers,
the pathway has to be found which avoids a large
excess of energy through the conical intersection.
This offers the opportunity to tailor laser pulses that
will drive the system into the desired target, and will
be addressed in section 5. Similar situations can be
expected in considerably larger systems, providing
that the characteristic electronic aspects remain
preserved.

4.4. Full Quantum Mechanical Multistate
Dynamics of Small Systems and fs-Signals

The importance of using femtosecond lasers in
probing molecular dynamics, in obtaining accurate
spectroscopic information (e.g. vibrational and rota-
tional structure), and in manipulating ultrashort
processes has been successfully illustrated for the

examples of diatomic and triatomic molecules. Pio-
neering experiments on the photodissociation reac-
tions of ICN185 and NaI performed by Zewail and co-
workers,186,187 on femtosecond temporal spectroscopy
(FTS) on iodine I2,187 and on fs-time-resolved molec-
ular multiphoton ionization on Na2 by Gerber and
co-workers132,182 are typical examples which stimu-
lated theoretical work to provide the basis for the
identification of underlying ultrafast processes in the
measured features. For this purpose, the methods
developed by Williams and Imre416,417 and Engel and
Metiu418,372,256 have been extremely useful.

In the case of NaI, different temporal behaviors of
two reaction channels due to the crossing between
the ionic ground state and the covalent excited state
were identified by joint experimental and theoretical
efforts.185,186 Either the wave packet is trapped on the
adiabatic excited state surfaces without crossing, or
it crosses the diabatic surface. Therefore, the oscil-
lations, dephasing, and recurrences are present, and
the different natures of the dynamics at short and
long times were identified. The early time behavior
was reproduced by classical mechanics, but for dephas-
ing and spread in the chaotic region, the quantized
packet is necessary.185,186 Comparison of experimental
and theoretical results on the example of I2

187,256

demonstrated the ability of femtosecond temporal
spectroscopy (FTS) to provide high-resolution spec-
troscopic information in the time domain, allowing
one, in principle, to solve the inversion problem, for
example, reconstruction of the potential energy sur-
face.187

In the fs-time-resolved multiphoton ionization ex-
periments by Gerber and co-workers,132,182 two dif-
ferent photoionization processes in measured pump-
probe ionization and photofragmentation spectra
have been identified. The first is the direct photo-
ionization of an excited state in which one photon
creates the wave packet in the first excited state
(A1Σu

+) and the two photon probe transfers that
motion from the inner turning point via the second
excited state (21Πg) into the ionization continuum of
Na2

+ (2Σg
+). The time-dependent quantum calcula-

tions reproduced the measured features, reflecting
the wave packet harmonic motion in the bound A1Σu

+

state for short times as well as the spreading and
recurrences at longer times.182 In the second process,
two photons created a wave packet in the 21Πg state
and one photon transferred its motion from the outer
turning point into the ionization and fragmentation
continuum via a doubly excited bound Na2

// state.
In fact, it will be shown in section 5.2 that these
experiments have provided the verification of the
Tannor-Rice single-parameter control,126,127 since for
different time delays the different reaction channels,
either Na2 f Na2

+ + e- or Na2 f Na+ + Na + e-,
were favored.

Joint experimental and theoretical studies of mul-
tiphoton ionization processes on K2,184 Cs2,419,420 and
Li2

138 revealed similarities and differences with pro-
cesses found in Na2, which stem from different
characteristic features of the PES for excited states
of neutral and cationic species of these systems as
well as from experimental conditions. Furthermore,
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the fs-dynamics of mixed dimers, such as the vibra-
tional wave packet dynamics of the A1Σ+ state of
NaK188 and its fractional revivals,189 has been inves-
tigated experimentally.

Upon increasing the size by adding only a single
atom, pure and mixed alkali trimers offered a wealth
of new phenomena which have been investigated
experimentally using fs pump-probe spectroscopy
and elucidated theoretically. They are connected (i)
with the nonrigidity of nuclei, giving rise to multiple
minima on the potential energy surface due to Jahn-
Teller or pseudo-Jahn-Teller effects, and (ii) with the
presence of many electronic states in a narrow energy
interval requesting the consideration of nonadiaba-
ticity. Therefore, despite their small size, trimers
represent a challenge for experimental techniques
and for theoretical treatments due to the interplay
between their complex electronic structure and nuclear
dynamics. The real time investigations of the ground
and excited states of Na3 trimers by fs-spectroscopy
allowed identification of pseudorotational wave packet
motions in some of the states (e.g. ground state192 and
(B) excited state192) as well as ultrafast fragmenta-
tions in other ones421 (e.g. C- and D-state). Moreover,
it has been recognized that the observations of the
processes mentioned above are strongly dependent
on experimental conditions, such as the duration of
the laser pulses or the strength of the laser fields.
For example, different fs pump-probe experimental
spectra obtained for the B state of Na3 using different
pulse durations (such as short (300 fs) and long (3
ps)) were assigned to a fast symmetric stretching
vibration and to slow pseudorotational wave packet
motion, respectively. This is based on quantum
mechanical calculations.193 In addition to the varia-
tion of the pulse length, it has been shown theoreti-
cally that the change of the pulse strength or carrier
frequency can be used to excite radial or pseudoro-
tational motions in different states (e.g. ground or
excited state).194 In the case of K3, the theoretical
predictions of an excited state located at ∼800 nm195

initiated fs-experiments196 which provided evidence
that wave packet propagation and ultrafast photo-
dissociation can occur simultaneously in the excited
state, which could not have been accessed earlier by
CW spectroscopy. Furthermore, photodissociation of
excited Nan (n ) 3-10)183,198 and Kn (n ) 3-9)197

clusters has been studied as a function of cluster size,
demonstrating that different photodissociation dy-
namics occurs in these two series of clusters due to
the different natures of their excited states. This has
also been confirmed by time-resolved observation of
bound-free transitions in mixed Na2K and K2Na
trimers.199 In the case of Na2K, the vibrational
dynamics in the predissociated state was monitored
in addition to fragmentation of NaK, while, in the
case of K2Na, no wave packet dynamics was resolved
due to the short lifetime of the predissociated excited
state of this trimer. The above different character-
istics of both mixed trimers are closely related to the
different natures of the excited states of the Na2- and
K2-subsystems.

Complementary theoretical investigation of dy-
namics in the excited state of Na2K involves a large

number of excited states which undergo nonadiabatic
couplings. Preliminary results of pump-probe signals
obtained from semiclassical nonadiabatic dynamics
based on good quality 3D energy surfaces indicate
that the fragmentation of NaK occurs, involving
passage through conical intersections and avoided
crossings. Therefore, despite the relatively good
agreement between leading features of theoretical
and experimental pump-probe spectra, it is still
challenging to identify conditions under which fs
pump-probe signals exhibit the signature of periodic
motion within individual excited states.422

All these fs pump-probe investigations were pre-
requisites for applying different control schemes
which will be addressed in section 5.

5. Tailored Laser Fields and Analysis of
Processes by Control

5.1. Optimal Control Theory and Closed Loop
Learning Control

As briefly outlined in section 2.3, tailored laser
pulses are appropriate for exciting different super-
positions of eigenstates by coherent control, creating
wave packets which are directed to a desired target
state. Optimal control theory (OCT)240-244 and closed
loop learning control (CLL),245 which takes advantage
of modern pulse shaping techniques,11 have success-
fully been applied to systems of different complex-
ity.57-76,248,423 Both involve an iterative procedure as
shown in Figures 24 and 25. The scheme for CLL
used in experimental setups is also shown in Figure
25.

In optimal control theory, the optimized pulses are
obtained from the functional in the framework of the
variational method:243

J is the functional of the radiation field ε(t). There-
fore, the maximization has to be carried out with
respect to the variation of the functional form of ε(t)
which involves temporal shape and spectral content.
P̂ is the projector operator which selects the desired
target. For example, one can choose the model for two
potential energy surfaces, and the ground state has
two isomers (I and II), as shown in Figure 24.

A constraint that the energy per pulse is limited
is given by

which, together with eq 49, implies that the following
functional must be optimized:

Here λ is a Lagrange multiplier.
If one imposes the constraint that the Schrödinger

equation must be satisfied, the modified objective

J ) 〈ψ(T)|P̂|ψ(T)〉 (49)

E ) ∫0
T
dt |ε(t)|2 (50)

JR ) 〈ψ(T)|P̂R|ψ(T)〉 - λ[∫0
T
dt |ε(t)|2 - E],

R ) isomer I, isomer II (51)
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functional, which should be optimized, takes the
following form:

If ψ(t) satisfies the time-dependent Schrödinger
equation, the second term on the right-hand side of
eq 52 vanishes for any ø(t), and the third term is zero
when ε(t) satisfies eq 50. Both of these terms allow
variations of JR with respect to ε(t) and ø(t) inde-
pendently to the first order in δε(t).

The condition δJR/δψ ) 0 generates a partial
differential equation for the Lagrange multiplier
function ø(t)

which is the time-dependent Schrödinger equation
subject to the final condition

and a partial differential equation for ψ(t)

subject to the initial condition

Finally, the optimal applied field is defined by the

condition δĴR/δε(t) ) 0, which leads to

Figure 24. Scheme for optimal control.

Figure 25. Schemes for closed learning loop control.

ε(t) ) - i
λp

[〈øg(t)|µ̂ge|ψe(t)〉 - 〈ψg(t)|µ̂ge|øe(t)〉] (57)

JR ) 〈ψ(T)|P̂R|ψ(T)〉 +

2Re∫0
T
dt 〈ø(t)|ip ∂

∂t
- Ĥ|ψ(t)〉 -

λ[∫0
T
dt |ε(t)|2 - E] (52)

ip
∂ø(t)
∂t

) Ĥø(t) (53)

ø(T) ) P̂Rψ(T) (54)

ip
∂ψ(t)

∂t
) Ĥψ(t) (55)

ψ(0) ) ψ0 (56)
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with

where µeg is the dipole operator and the indices e and
g label the excited-state and the ground-state energy
surfaces. The equation of motion of the coupled
amplitudes on the two potential energy surfaces
reads

with the interaction potential V̂ge defined as µ̂geε(t).
The numerical calculations then involve an itera-

tive procedure which includes the following:
(i) initial guess for the pulse shape ε(t);
(ii) integration of the Schrödinger equation forward

starting from the initial condition in the ground state;
(iii) application of the projector operator which

selects the target (the exit channel to ψ(t)) to obtain
ø(t) as an initial value for backward propagation;

(iv) propagation of ø(t) backward in time;
(v) during the propagation, calculation of the

overlap function

and
(vi) after completion of the backward propagation,

renormalization of the result needed to obtain the
new pulse

(vii) iterative procedures starting from step ii
should be repeated until convergence has been
achieved. The above outlined procedure in the sim-
plified form is schematically given in Figure 24 (cf.
refs 237 and 243).

Of course the CLL technique represents a powerful
tool for optimization of the desired yield, but it does
not provide information about the quantum system
itself or about the processes involved. As shown in
Figure 25, the laser system and the pulse shaper are
used to produce the electric field ε(t) which interacts
with the quantum system initiating photochemical
or photophysical processes. After detection of the
products, a learning algorithm based on evolutionary
algorithms246,247 produces a new electric field based
on experimental input and the defined objective. This
loop is then repeated until the optimized laser pulses
give rise to the aimed yield. This technique opened
new roads in the field, in particular, concerning the
optimization of the yield of the chosen reactivity
channels.11 Furthermore, technological developments
such as laser pulse compression and pulse cleaning
techniques (cf. ref 11 and references therein) are
valuable for producing stable pulse forms. This is
particularly important in the case of complex sys-
tems. However, only the comparison between the
tailored pulses obtained from optimal control theory
(OCT) and those obtained from the CLL technique

can provide insight into the processes and the system
itself and, therefore, can also address the inversion
problem.

There are two important aspects which we wish to
address in connection with the scope of optimal
control theory. The question to be answered is
whether the shapes of the optimized pulses can be
used to unravel mechanisms of underlying processes,
in particular when several excited states are in-
volved. If the answer is positive, the control can be
employed as a tool for analysis. This issue will be
addressed in section 5.2. Moreover, for the systems
with increasing complexity, the question is raised
whether conditions can be found under which the
controllability can be ensured. In this context, the
required information about the complex systems, in
terms of multidimensional potential energy surfaces,
is usually not available. However, development of
dynamics “on the fly” has drastically changed the
situation. In particular, for a very short pulse limit,
the classical quantum mechanical correspondence
between a trajectory and a wave packet can be used
to describe the system and its time evolution. The
ensemble of classical trajectories of a Wigner swarm
representing the wave packet accurately mimics the
quantum mechanical flow of amplitude, permitting
use of semiclassical simulations in connection with
optimal control theory. This simplified picture has
an enormous advantage because it provides informa-
tion about the system and time-dependent processes
involved, as will be shown in section 5.3.

5.2. Single-Parameter and Multiparameter Control
in Small Systems: Analysis of Processes by
Control

Investigation of simple systems offers a possibility
to learn how to use control as a tool for analyzing
the underlying processes. Therefore, metallic
dimers136-141,154,191,250,424 and diatomic molecules250,272

have been studied in numerous contributions. This
is due to the fact that they are suitable model systems
for establishing scopes of different control schemes
and because they became easily accessible to experi-
mental pulse shaping techniques.142-153 In fact, ex-
perimental work on Na2,183 using one-parameter
control, was the first confirmation of the simple
Tannor-Rice control scheme.126,127 By varying the
time delay between the first and second pulses,
Gerber and co-workers investigated competition be-
tween ionization and dissociative ionization of Na2

(Na2 f Na2
+ + e- versus Na2 f Na+ + Na + e-; cf.

section 4.4). Consequently, the ratio of molecular to
atomic ion products Na2

+/Na+ oscillates with the
change in the time delay between the pump and
probe pulses with the period determined by the
motion of the wave packet as shown in Figure 26.
Control over the branching between the Na+/Na2

+

channels was also achieved by using the given laser
wavelengths. With these, a different sequence of
states in Na2, which involves a double minimum
potential energy surface, was reached, as shown in

λ2 ) 1
E∫0

T
dt |〈øe(t)|µ̂eg|ψg(t)〉 - 〈ψe(t)|µ̂eg|øg(t)〉|2

(58)

i ∂

∂t (ψe
ψg

)) (Ĥe V̂ge
V̂eg Ĥg

)(ψe
ψg

) (59)

O(t) ) i[〈øe(t)|µ̂eg|ψg(t)〉 - 〈ψe(t)|µ̂eg(t)|øg(t)〉] (60)

ε(t) ) O(t)(1E∫0
T
dt |O(t)|2)-1/2

(61)
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Figure 26.236 Similarly, the variation of the delay time
between the pulses was used by Herek, Materny, and
Zewail134 to switch between different channels for the
photofragmentation of NaI, leading to the same
product

Encouraged by confirmation of the control concept,
two-parameter control was considered in order to
manipulate different processes in dimers and di-
atomic molecules. In addition to the pump-probe
time delay, the second control parameter involved the
pump142,143 or probe136,137 wavelength, the pump-
dump delay,139,144,145 the laser power,191 the chirp,138,146

or the temporal width140 of the laser pulse. Optimal
pump-dump control of K2 has been carried out
theoretically in order to maximize the population of

certain vibrational levels of the ground electronic
state using one excited state as an intermediate
pathway.141,250,272,424 The maximization of the ioniza-
tion yield in mixed alkali dimers has been performed
first experimentally using closed loop learning con-
trol148,147,153 (CLL) and then theoretically in the
framework of optimal control theory (OCT).154

Since optimized pulses obtained from OCT and
CCL are available for NaK, it is instructive to present
these results for two purposes. First, it is possible to
show under which conditions the shaped pulses are
reproducible. Second, the connection between the
forms of the shaped pulses and different ionization
pathways can be established. This allows determi-
nation of the mechanism for the maximization of the
ionization yield under the participation of several
excited states.

For this purpose, optimization of laser fields for
controlling the photoionization in NaK will be out-
lined. This will be performed in the framework of
optimal control theory243 using full quantum me-

Figure 26. (top) Potential energy curves for Na2 and Na2
+ illustrating the Tannor-Rice control of the photoionization in

Na2 involving the 21Πg state (left side) and the 21Σu
+ state (right side). (bottom) Corresponding ratios of Na+ and Na2

+ as
a function of the time delay between pump and dump pulses.132,133,236 Reprinted with permission from ref 236. Copyright
1997 Wiley-VCH.

NaI* f [Na‚‚‚I]* f Na(2S1/2) + I(3P3/2) and

NaI * f [Na‚‚‚I]* 98
hν

[Na‚‚‚I]** f

Na(2S1/2) + I(3P3/2)
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chanical treatment. This involves the combination of
(i) electronic structure, (ii) dynamics, and (iii) optimal
control considering (iv) experimental conditions.

(i) Accurate potential energy surfaces for the
ground and excited states of NaK425,426 as well as for
the cationic ground state154 are needed prerequisites
for the consideration of the ionization process.154 The
calculations using the ab initio full CI method for the
valence electrons and an effective core potential with
core-polarization (ECP-CPP), together with suitable
AO basis sets, are adequate for this purpose. Inves-
tigation of photoionization processes in the energy
interval of 4.83 eV, corresponding to three photons
of 1.61 eV used in experiments, involves the three
excited states 21Σ+, 31Π, and 61Σ+ of the neutral NaK,
which are resonant with one- and two-photon ener-
gies, respectively.

(ii) Quantum dynamics simulations can be carried
out by representing the wave function on a grid and
using a nonperturbative approach based on a Che-
bychev polynomial expansion of the time evolution
operator.367 The interaction with the time-dependent
electric field involves the ground state and three
excited states of the neutral NaK as well as a
manifold of cationic states. The treatment within the
dipole approximation and the rotating wave ap-
proximation (RWA) is justified in the weak field
regime. The rotational motion can be neglected
because of the large atomic masses and short time
scales involved.

The outlined procedure involves the following
steps. The Hamiltonian Ĥ is given in the Born-
Oppenheimer and dipole approximation

where T̂ is the operator of the nuclear kinetic energy,
V̂ stands for the potential energy curves of the
considered electronic states (both operators are di-
agonal), and µ̂ge is the transition dipole moment
between the considered electronic states and is off
diagonal.

In the rotating wave approximation, a cosine-like
real electric field can be replaced by

The time propagation follows the principle of a
successive application of the time evolution operator

with

assuming that the Hamiltonian does not change
significantly within time ∆t and can be replaced by
piecewise constant terms.

After a normalization of the eigenvalue spectrum
of Ĥ to the range [-1, 1], the polynomial expansion
of the normalized time evolution operator e-iĤ′∆t′ can

be obtained by means of the Chebychev propagator

where Tn represents the n-th Chebychev polynom and
Jn(∆t′) are Bessel functions of the first kind of order
n. Since the Bessel function decreases exponentially
if the order n becomes larger than the argument ∆t′,
an exponential convergence of the expansion co-
efficients of eq 66 can be achieved.

(iii) The objective of the optimal control is the
maximization of the photoionization yield, and the
target operator corresponds to the total occupation
of the cationic states. For this purpose, eq 52 has to
be used, in which the last term on the right-hand side
can be modified by introducing the penalty factors
which allow one to respect appropriate experimental
conditions.243 For the transition dipole moments
between the excited electronic states of the neutral
species and the ground state of the cation, different
approximations can be introduced.136-138,140,191,419 For
example, the constant value of 5 D is in the range of
transition dipole moments between electronic states
of the neutral NaK and is sufficiently large to provide
the robustness of the optimized pulses according to
ref 427. The influence of the nuclear distance-
dependent transition dipole moments should be
tested. This is available, for example, for NaI140 and
was found to be negligible.

However, an explicit treatment of the electronic
continuum for the cationic ground state is very
important. It dramatically influences the optimiza-
tion of the ionization process, and therefore, it is
mandatory for the appropriate treatment. For this
purpose, the electronic continuum can be discretized
by introducing several replicas of the cationic ground
state. For example, in the case of NaK, 14 replicas,
with energy differences of 95 cm-1 in the range from
1075 to 2310 cm-1, for the electron kinetic energies
(eKEs) cover both the direct and the sequential
photoionization from the outer turning points of the
involved electronic states. For the optimization of the
pulses, the Krotov algorithm428 can be employed.

(iv) In the experiment, NaK dimers were produced
in an adiabatic coexpansion of sodium-potassium
vapor and argon carrier gas through a nozzle into the
vacuum. To obtain mainly dimers, the oven temper-
ature and the argon pressure have to be chosen
appropriately (e.g. 650 °C and to 2 bar, respectively).
To excite and ionize the neutral alkali dimers, the
femtosecond laser beam was focused onto the molec-
ular beam. The produced ions were mass selected
and detected. The laser pulses were produced by a
Ti:sapphire oscillator (Tsunami; Spectra Physics)
with a repetition rate of 80 MHz, a central wave-
length of 770 nm, a spectral width of 8.5 nm (fwhm),
and a pulse intensity of about 1 GW/cm2 in the
interaction region. These data show that the experi-
ments were carried out in the weak field regime.
Such experimental conditions can be taken into
account in the theoretical treatment, and the mag-
nitude of the simulated laser field can be adjusted
to the experimental values according to the method

Ĥ(t) ) T̂ + V̂ - µ̂geε(t) (62)

εRWA(t) ) 1
2

A(t)eiωt (63)

|Ψ(t0 + n∆t)〉 ) ∏
j)0

n-1

Û(t0 + (j + 1)∆t,

t0 + j∆t)|Ψ(t0)〉 (64)

Û(t + ∆t, t) ) e-iĤ(t)∆t (65)

e-iĤ′∆t′ ≈ ∑
n)0

N

(2 - δ0,n)(-i)nJn(∆t′) Tn(Ĥ′) (66)
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given in ref 147. The experimental pulse shaper
consists of a liquid crystal modulator mask with a
resolution of 128 pixels located in the Fourier plane
of a zero dispersion compressor. The experimentally
optimized pulses were obtained by a nondeterministic
evolutionary algorithm modulating only the phase.
For further details on the experimental setup, see ref
147. It is important to know that the obtained ion
yields stay almost constant for repeated optimization
runs, whereas the optimized pulse shapes may
slightly differ. The best pulse form under the given
experimental conditions that has been mostly ob-
tained in the performed optimizations is shown in
Figure 27. The error of the optimization factor due
to molecular beam fluctuation is estimated to be 5%.
The temporal intensity of the acquired experimen-
tally optimized pulse was obtained from the experi-
mental cross-correlation signal and served as an
initial guess for the theoretical optimization.

Theoretically optimized pulses in the framework
of OCT,154 obtained according to the procedure out-
lined in section 5.1 using experimentally optimized
pulses as an initial guess, are shown in Figure 27.
They are compared with the experimentally opti-
mized pulse using the CLL technique described
above, which provided an increase of the ion yield
by 60% with respect to that generated by a transform
limited pulse. The leading features of both phase
modulated pulses obtained from OCT and CLL are
in good agreement, as shown in Figure 27a. The
snapshots of the wave packet propagation under the
influence of the theoretically optimized pulse (Figure
27c) serve to assign the subpulses to underlying
processes and to reveal the mechanism responsible
for the population of the cationic state.

The role of the P1 subpulse is to transfer a part of
the population from the ground electronic state to the
first excited 21Σ+ state. This creates a wave packet

Figure 27. (a) Comparison of the theoretically (dotted line) optimized phase-modulated pulse (starting with the
experimentally optimized pulse) with the experimentally (solid line) optimized pulse, using the CLL procedure; (b) Wigner-
Ville distribution of the theoretically optimized pulse; (c) snapshots of the wave packet propagation corresponding to P1
(-410 fs), P2 (-230 fs), P3 (10 fs), and P4 (260 fs).154
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in the 21Σ+ state which propagates almost to the
outer turning point within 180 fs. Subsequently, at
the outer turning point, the dominant P2 subpulse
simultaneously transfers the population to the 31Π
state by a one-photon process as well as to the
cationic ground state by a resonant two-photon
process, as can be seen in Figure 27c. In addition,
the P2 subpulse increases the population of the 21Σ+

state at the inner turning point. Subsequently, the
P3 subpulse brings the wave packet to the 31Π state
after the outer turning point has been reached. In
contrast to the dominant subpulse P2, the P3 subpulse
also transfers population to the cationic state by the
one-photon sequential processes, since the split part
of the wave packet, before being transferred by P2,
propagates on the 31Π state as well. At later times,
for example, at P4, the superposition of the wave
packets complicates the propagation by interference,
as can be seen from the corresponding snapshot.

The separation of the early subpulses up to P4
reflects the motion on the 21Σ+ state with a periodic-
ity of ∼440 fs (oscillation period in the 21Σ+ state),
while after the P4 subpulse the periodicity is dis-
turbed by the influence of the 31Π state. The de-
scribed steps leading to the desired population of the
cationic state can also be identified from the analysis
of the state populations displayed in Figure 28a.
Notice that, besides excitation, dump processes also
appear (see Figure 28a). Due to the increased popu-
lation of the 21Σ+ and 31Π states, the dump processes
appear at 200, 800, and 1360 fs from the 21Σ+ state
to the ground state and at 700 fs from the 31Π state
to the 21Σ+ state. Consequently, a staircaselike

behavior in the populations of these states is present.
Moreover, the later subpulses cause a substantial
increase in the population of the cationic states,
showing the important contributions of the later
subpulses with low intensities.

On the basis of the above analysis of the underlying
dynamics driven by the optimized pulse, the following
mechanism for the optimal ionization process of NaK
can be proposed. It involves an electronic transition
followed by a direct two-photon ionization from the
outer turning point of the 21Σ+ state. This behavior
supports the proposed explanation of the experimen-
tal optimal pulse shape given in experimental pub-
lications.151,152 However, according to the analysis of
the theoretically optimized pulses described above,
the sequential one-photon ionization process medi-
ated by the 31Π state takes over the important role
at later times.

Additional insight into the energetic and temporal
structure of the optimal pulse can be gained from the
Wigner-Ville representation shown in Figure 27b.
The dominant feature is the increase of the photon
energy with time. This up-chirp in the energy regime
of 1.59-1.63 eV can be qualitatively explained by an
overlap between the propagating wave packet on the
31Π state and the successively higher lying vibronic
levels of the cationic state. For an identification of
the quantitative features, amplitude and phase modu-
lations would be more adequate. However, the X-
FROG trace obtained from the experimental result152

also shows a pronounced up-chirp, in full agreement
with the features displayed in Figure 27b. Moreover,
the up-chirp was found to enhance the NaK ion signal
according to recent chirp-dependent experiments.150

To verify the robustness of theoretically optimized
pulses, the results obtained using two Gaussian
pulses separated by 660 fs, as an initial guess, are
compared with experimental results in Figure 29.
The experimental pulse is again roughly reproduced,
and the leading features of the theoretical pulse
remain unchanged with respect to those obtained by
an experimentally optimized pulse as an initial guess
(cf. Figure 27). The main differences between the
optimized pulses obtained with distinct initial guesses
concern the relative intensities of the weaker sub-
pulses, which lead only to very small relative changes
in the time-dependent populations (cf. Figure 28b).
The Wigner-Ville representations of both theoreti-
cally optimized pulses are almost identical, verifying
the robustness of the derived pulses and therefore
the validity of the proposed mechanism. These find-
ings were obtained only if the continuum of the
cationic state was taken into account as described
above.

In summary, the agreement between experimen-
tally and theoretically optimized pulses, which is
independent of the initial guess, shows that the
shapes of the pulses can be used to deduce the
mechanism of the processes underlying the optimal
control. In the case of optimization of the ionization
process in NaK, this involves a direct two-photon
resonant process followed by sequential one-photon
processes at later times. These findings obtained on
the simple system are promising for using the shapes

Figure 28. Time-dependent population of participating
electronic states of the neutral and cationic NaK, obtained
from simulations with an initial guess using (a) the
experimentally optimized pulse154 or (b) two Gaussian
pulses.154
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of tailored pulses to reveal the nature of processes
involved in the optimal control of more complex
systems. This will be addressed in the next section.

As already mentioned in section 4.4, the electronic
structure of excited states of alkali trimers is very
complex due to conical intersections and avoided
crossings. Consequently, the description of nuclear
dynamics is very demanding. In this context, quan-
tum optimal control of the photodissociation of Li2-
Na from the stable acute geometry to the near-
degenerate obtuse triangular geometry over the
excited state has been carried out based on two-
dimensional energy surfaces.424,429 The analysis of the
optimized pulse revealed a fundamental pump-
dump cycle. A similar study was performed for the
collision pair Na + H2 with the aim of forming a
localized wave packet near the conical intersection
of the ground state (Na(3S) + H2) and the excited
state (Na(3P) + H2). Stepwise excitation of the
collision pair at different intersection distances is
reflected in optimized pulses.430

Experimentally, the control of the population of
differently bound electronic states of Na3 was achieved
by linearly chirped fs-laser pulses of low intensity.149

In the case of unchirped or slightly downchirped
excitation pulses (with ∼300 fs duration), the wave
packet propagation takes place in the B state, and
the symmetric stretching mode can be identified in
the pump-probe spectrum.149 In the case of the 400
fs downchirped pulse, the leading blue spectral
component creates a wave packet in the B state,
which is dumped by the red spectral tail into the
vibrational excited state of the electronic ground
state. Additionally, the symmetric stretching mode
is reflected in the pump-probe spectrum. This
finding confirms also the Tannor-Kosloff-Rice
scheme.126,127,239,243

In addition to the control of the molecular dynamics
in bound electronic states of Na3, control of the
photofragmentating heteronuclear trimer Na2K was
also experimentally achieved.147-150 Manipulation of
different branching ionization and fragmentation
pathways of the photoexcited Na2K was successfully

performed in the framework of the CLL optimal
control scheme for the multiphoton process.147-150 The
optimal laser field controls the yield of the resulting
parent and fragment ions. The pulse structure is
extremely rich and should contain information about
underlying processes. The intensity of the subpulses
correlates with the number of photons involved in the
process, and the temporal structure of the pulses
should be connected with the vibronic properties of
the molecule or the fragment. To use the shape of
the pulse for identification of underlying processes,
it would be necessary to optimize the pulses theoreti-
cally and to compare them with experimentally
optimized pulses. This would extend the use of the
control as a tool for analysis of processes in small
systems but with complex electronic structures.

5.3. Complex Systems: Optimal Control and
Analysis of Processes by Control

It is still a central issue if and under which
conditions optimal control involving more than one
electronic state can be achieved for systems with
increasing complexity. For these systems, energy
landscapes of the ground and excited states can
substantially differ from each other. Therefore, the
first issue to be addressed concerns the existence of
a connective pathway between the initial state and
the objective which is reached via a different elec-
tronic state. In addition, even if the connective
pathway is ensured, the optimal path must be found.
Moreover, the method used for nuclear dynamics and
the tailored pulses should involve a realistic compu-
tational demand. Therefore, new strategies for opti-
mal control are needed. An attractive possibility is
based on the concept of the intermediate target121,431

in the excited state, which is defined as a localized
ensemble (wave packet) corresponding to the maxi-
mum overlap between the forward propagating en-
semble on the electronic excited state (starting from
the initial state) and the backward propagated
ensemble from the objective in the ground state at
optimal time delay between both pulses.

Figure 29. (a) Comparison of the theoretically (dotted line) optimized phase-modulated pulse (starting with two Gaussian
pulses) with the experimentally (solid line) optimized pulse, using the CLL procedure; (b) Wigner-Ville distribution of the
theoretically optimized pulse.154
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In the case that separation of active from passive
degrees of freedom cannot be made for complex
systems and therefore a large number of them have
to be treated explicitly, the classical nuclear dynamics
is the only realistic approach. Quantum corrections
can also be introduced under the given circum-
stances. Moreover, the classical MD “on the fly” can
be extremely useful for realization of new strategies
for optimal control, such as construction of the
intermediate target, as will be shown below. The role
of the intermediate target is to guarantee the con-
nective pathway between the initial state and the
objective and to use the localized ensemble in the
excited state to select the appropriate parts of both
energy surfaces involved. This is directly related to
the inversion problem.187,256-259 In the case of the
pump-dump control for two-phase unlocked ultrafast
fields in the weak response regime, the intermediate
target serves first to optimize the pump pulse.
Therefore, it is possible to decouple optimization of
the pump and the dump pulses, which is very
advantageous from the computational point of view.
An appropriate tool for realization of the strategy for
optimal control of complex systems based on the
concept of the intermediate target is the density
matrix formulation of the OCT. It combines the
Wigner-Moyal representation of the vibronic density
matrix with ab initio molecular dynamics (MD) “on
the fly” in the electronic excited states and the ground
states without precalculation of both energy surfaces.
This method, labeled as the ab initio Wigner distri-
bution approach, was outlined in section 3.2. It is
applicable to complex systems provided that the
adequate quantum chemical procedures can be used
for dynamics in excited states. Moreover, due to
available analysis based on MD, the shapes of the
optimized pulses can be directly connected with
underlying ultrashort processes. After the outline of
the theoretical basis for this optimal control strategy,
the concept of the intermediate target will be applied
to optimize the pump and dump pulses for driving
the isomerization process in the nonstoichiometric
Na3F2 cluster, avoiding conical intersection between
the ground state and the first excited state and
maximizing the yield in the second isomer.

Intermediate Target as a New Strategy for
Optimal Control in Complex Systems. The opti-
mal control strategy described here aims to optimize
the temporal shapes of phase-unlocked pulses (pump
and dump) and the time delay between them, td.
These tailored fields should be capable of driving the
system, starting from the lowest energy isomer over
the first excited state, to the second isomer (objective)
at the time delay td with maximal yield for systems
with an arbitrary number of degrees of freedom.

The form of the pump and dump pulses in the
optimal phase-unlocked pump-dump control is
εP(D)(t) ) EP(D)(t) exp(-iωegt) + EP(D)

/ (t) exp(iωegt),
where EP(D) is a slowly varying envelope of the fields,
and ωeg is the energy difference between the minima
of the excited and the ground states. The objective
in the ground state is described in the Wigner
representation by an operator Â ) A(Γ)|g〉〈g|. A(Γ) is
the Wigner transform of the objective in the phase

space Γ ) {qi, pi} of coordinates and momenta, and
|g〉〈g| is the ground-state projection operator. A(Γ) can
be defined, for example, as

where qji labels Cartesian coordinates of the second
isomer and ∆qi are deviations. The role of the
function Θ is to ensure that the kinetic energy is
below the lowest isomerization barrier Emin. This
corresponds to the spatial localization of the phase
space density and arbitrary distribution of momenta.
The optimized pulses can be obtained from the
functional

where A(tf) is the yield at time tf, which can be
calculated for weak fields in second-order perturba-
tion theory.260,268,432 It involves the propagated excit-
ed- and ground-state ensembles induced by the pump
and dump pulses, the time-dependent energy gaps
between the two states, and the initial distribution
of the phase space in the Wigner representation.
Optimal field envelopes can be obtained by cal-
culating the extrema from the control functional
(eq 68) by performing the variation pro-
cedure.260-263,265-269,423,432-434 This leads to the pair of
coupled integral equations for the field envelopes:

The integral kernels corresponding to material re-
sponse functions are given by

Γe and Γg correspond to propagated excited- and
ground-state ensembles, and Ueg is the time-depend-
ent energy gap between the excited state and the
ground state. Both equations depend on the pump
and dump pulses, and therefore, they are coupled
integral equations which can, in principle, be solved
iteratively, yielding optimized pump and dump pulses.
This is computationally unrealistic even for systems
of moderate complexity because the coupled classical
simulations on the ground and excited states have

A(p,q) ) ∏
i)1

N 1

x2π∆qi

e-(qi-qji)2/2(∆qi)2
Θ(Emin - ∑

i)1

N pi
2

2mi
)

(67)

J(tf) ) A(tf) - λP∫0
tf|EP(t)|2 dt, -λD∫0

tf|ED(t)|2 dt
(68)

∫0
tfdτ′ MP(τ,τ′;ED) EP(τ′) ) λPEP(τ) (69)

∫0
tfdτ′ MD(τ,τ′;EP) ED(τ′) ) λDED(τ) (70)

MP(τ,τ′;ED) ) ∫∫d2 Γ0 ∫0
tfdτ′′ ∫0

τ′′
dτ′′′ A(Γg(tf-τ′′;

Γe(τ′′′-τ;Γ0)))e
i(ωeg-Ueg(Γe(τ′′′-τ;Γ0)))(τ′′-τ′′′) ×

ei(ωeg-Ueg(Γ0))(τ-τ′)Fgg(Γ0) ED(τ′′′) ED*(τ′′)
τ g τ′ (71)

MD(τ,τ′;EP) ) ∫∫d2 Γ0 ∫0
τ′
dτ′′ ∫0

τ′′
dτ′′′ A(Γg(tf-τ;

Γe(τ′-τ′′;Γ0)))e
i(ωeg-Ueg(Γe(τ′-τ′′;Γ0)))(τ-τ′)×

ei(ωeg-Ueg(Γ0))(τ′′-τ′′′)Fgg(Γ0) EP(τ′′′) EP
/ (τ′′)
τ g τ′ (72)
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to be performed. The calculation of objective A in eqs
71 and 72 requires the propagation of the ensemble
on the ground state Γg, starting at different initial
conditions. These conditions are obtained from the
propagated ensemble Γe of the excited state at each
time step. Therefore, the strategy involves decoupling
of eqs 71 and 72, which is possible only in the short
pulse regime on the femtosecond time scale and is
outlined below.

(i) In the zeroth-order approximation of an iterative
procedure and in the ultrafast regime, it is justified
to calculate the kernel functions MP and MD with
strongly localized pulse envelopes EP ≈ δ(t) and ED
≈ δ(t - td). Then, the zeroth-order material response
functions take the following forms:

The pump and dump pulses are decoupled. Conse-
quently, the pump pulse optimization involves the
propagation on the excited state Γe(td-τ;Γ0) from τ )
0 until τ ) td, starting with Γ0 (initial ensemble; eq
73). For the dump optimization, according to eq 74,
the dynamics on the ground state Γg(tf-τ;Γe(td)) has
to be carried out for τ′ ) td until tf with the initial
conditions given by the ensemble of the excited state
Γe(td) at td, which corresponds to the intermediate
target. Γe(td) at td can be determined from the
maximal overlap between a forward propagated
ensemble from the first isomer on the excited state
and a backward propagated ensemble on the ground
state from the second isomer.

(ii) Equations 69 and 73 yield an optimal pump
pulse which localizes phase space density at the
intermediate target.

(iii) The optimized dump pulse projects the inter-
mediate target to the ground state and optimally
localizes the phase space density into the objective
(second isomer) at a final time tf. This means that
the connective pathway between the initial state and
the objective is guaranteed by the intermediate
target at a time td. For this purpose, the function
A(Γg(tf-td);Γe(td)) must have nonvanishing contribu-
tions, as follows from eqs 73 and 74. This procedure
can be continued iteratively, but it is most likely that
the zeroth- and first-order iterations lead to sufficient
accuracy. The concept of the intermediate target
represents a new strategy which ensures that the
objective with maximal yield can be reached by
optimizing pump and dump pulses independently.
This allows the application of the optimal pump-
dump control to complex systems and ensures con-
trollability, provided that the intermediate target can
be found, which is illustrated below.

Optimal Control of Photoisomerization in
Na3F2. The isomerization in Na3F2 through conical
intersection between the first excited state and the
ground state, as discussed in section 4.3, provides a
system with a high internal energy (∼0.65 eV) which

populates both isomers and does not allow population
of the second isomer only through this process.116

Therefore, the described optimal control strategy
based on the intermediate target concept serves as
an adequate tool to find the optimal pathway, allow-
ing one to populate isomer II with maximal yield and
suppressing the pathway through the conical inter-
section.121

For this purpose, the initial ensemble of isomer I
has to be generated. Then the intermediate target
involving excited- and ground-state dynamics has to
be determined. Finally, the pump and dump pulses
have to be optimized. For the initial ensemble, a 50
K, canonical ensemble in the ground state of isomer
I in the Wigner representation can be constructed
using, for example, a set of ∼1000 coordinates and
momenta. In the pump step (1.33 eV), the ensemble
can first be propagated on the excited state (for
example, 300 fs). To determine the intermediate
target and the optimal time delay td, the ensemble
has to be dumped to the ground state (in steps of,
e.g., 25 fs) and subsequently propagated (for, e.g., 1
ps). It can be shown that isomer II is reached by the
ensemble at td ) 250 fs and the residence time of at
least 500 fs can be achieved. The ensemble averaged
geometry which determines the coordinates of the
intermediate target is shown in Figures 30 and 31.
Notice that the “geometry” of the intermediate target
is closely related to that of the transition state
separating two isomers on the ground state. In this
case, the role of the intermediate target ensuring the
connective pathway from the initial state and the
objective over the excited state is evidenced by its
relation to the transition state. The averaged kinetic
energy in the intermediate target corresponds to
∼75% of the isomerization barrier in the ground
state. This guarantees that, after the dump, the
ensemble will remain localized in the basin of isomer
II.

The optimization of the pump pulse leads to a
localization of the phase space density around the
intermediate target. For the intermediate target
operator in the Wigner representation (eq 73), a
minimum uncertainty wave packet can be assumed:

The material response function M(τ,τ′) for the
pump pulse (eq 73) can be calculated, for example,
on a time grid of 1 fs and can be symmetrized and
diagonalized according to eq 69. In this case, the
largest eigenvalue was obtained to be 0.82, corre-
sponding to the globally optimized pulse, which has
82% efficiency to localize the ensemble in the inter-
mediate target.

The shape of the optimized pump pulse, shown in
Figure 30, is characterized by two portions corre-
sponding to ∼70 and ∼10 fs. Fourier and Wigner-
Ville transforms of the pump pulse, shown also in
Figure 30, provide physical insight. Comparison of
the Fourier transform with the Franck-Condon
profile of isomer I shows that the excitation of the

MP
(0)(τ,τ′) ) ∫∫d2 Γ0A(Γg(tf-td;Γe(td-τ;Γ0))) ×

ei(ωeg-Ueg(Γ0))(τ-τ′)Fgg(Γ0) τ g τ′ (73)

MD
(0)(τ,τ′) ) ∫∫d2Γ0 A(Γg(tf-τ;Γe(τ′;Γ0))) ×

ei(ωeg-Ueg(Γe(τ′;Γ0)))(τ-τ′)Fgg(Γ0) τ g τ′ (74)

A(pi,qi) ) ∏
i)1

3N)15 1

2π∆pi∆qi

e-(qi-qji)2/2(∆qi)2
e-(pi-pi)2/2(∆pi)2

(75)
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low lying vibrational modes at ∼1.2 eV of the initial
ensemble is dominantly responsible for reaching the
intermediate target. This spectral region corresponds
to lower lying vibrational modes which open the Cs
structure of isomer I by breaking the Na-Na bonds
and one of Na-F bonds. The Wigner-Ville transform
shows that this energetically sharp transition corre-
sponds to the first temporal portion of ∼70 fs of the
pump pulse. In contrast, a very short second portion

after 80-90 fs of ∼10 fs is energetically much wider.
It is related to the tails of the Fourier transform,
which are symmetric with respect to the 1.2 eV
transition, reflecting equally distributed velocities in
the initial ensemble.

The dump pulse optimization leads to a spatial
localization of the phase space density in the objective
(isomer II). For this purpose, the intermediate target
operator (eq 75) can be propagated on the ground

Figure 30. Scheme for pump-dump optimal control in the Na3F2 cluster with geometries of the two ground-state isomers
and of the transition state separating them, the conical intersection, and the intermediate target (left side). The optimal
electric field corresponding to the pump and dump pulses121 (upper panel, right side). The mean energy of the pump pulse
is 1.20 eV, and the mean energy of the dump pulse is 0.6 eV. Fourier transforms of the optimal pump and dump pulses
and the Franck-Condon profile for the first excited state corresponding to the excitation energy Te ) 1.33 eV (middle
panel, right side). Wigner transform of the optimal pump pulse (bottom panel, right side).
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state, and the dump pulse is obtained from eqs 70
and 74. The largest eigenvalue, for example, of 0.78,
can be obtained. This corresponds to 78% efficiency
of localization of isomer II. The optimized dump pulse
is very short (∼20 fs; cf. the part of the signal after
td ) 250 fs in Figure 30). This means that the time
window around td for depopulation of the excited state
is very short. Otherwise, the system would gain a
large amount of energy in the excited state (leading
to a conical intersection). The Fourier transform of
the dump pulse is centered around 0.6 eV, corre-
sponding to the Franck-Condon transition at td.
Finally, to illustrate the efficiency of optimized
pulses, snapshots of the ground state ensemble
propagated after the dump process are shown in
Figure 31. It can clearly be seen that the phase space
density is localized in isomer II (objective) after td +
200 fs ) 450 fs.

Using the strategy for optimal pump-dump control
based on the intermediate target, it is possible to
show that optimized pulses drive the isomerization
process in the desired objective (isomer II), suppress-
ing the pathway through the conical intersection.
This means that the complex systems are control-
lable, provided that the intermediate target exists.
The analysis of the MD and of the tailored pulses
allows identification of the mechanism responsible
for the selection of appropriate vibronic modes neces-
sary for the optimal control.

In summary, optimal control of fs-processes, in-
volving two electronic states, driven by tailored pump
and probe or dump pulses requires identification of
the connective pathway between the initial state and
the objective and finding the optimal pathway. This
is possible if the intermediate target in the excited
state can be found, which selects the appropriate
parts of energy surfaces to ensure both requirements
mentioned above. This was illustrated for the ex-
ample of Na3F2, for which the optimal pump and
dump pulses populate the objective (isomer II) with
maximal yield, taking the optimal pathway and
avoiding the conical intersection. The identification
of the mechanism responsible for the shape of the
pulses serves as a guide toward understanding the
experimentally obtained tailored fields which still
represents a challenging task for future work. In this
way, the control is used not only to achieve the
desired yield but also to identify and to analyze the
underlying ultrafast processes responsible for favor-
ing one pathway and for suppressing the others.
Control as a tool for analysis complements the CLL
technique and sheds light on the black box.

6. Summary and Outlook
Analysis and control of ultrafast processes in

atomic clusters in the size regime in which “each
atom counts” are of particular importance from a
conceptual point of view and for opening new per-

Figure 31. Initial thermal ensemble, optimal pump and dump pulses, intermediate target (upper panels). Snapshots of
the dynamics obtained by propagating the ensemble corresponding to the intermediate target after the optimized pump-
dump at 250 fs on the ground state showing the localization of the phase space density in the basin corresponding to
isomer II121 (lower panels).
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spectives for many applications in the future. Simul-
taneously, this research area challenges the devel-
opment of theoretical and computational methods
from different directions, including quantum chem-
istry, molecular dynamics, and optimal control theory,
removing borders among them. Moreover, it provides
stimulation for new experiments.

By changing cluster size, and therefore structural
and optical properties, different ultrafast processes
can be monitored, and their time scales can be
determined. They include bond breaking, geometric
relaxation of different natures, IVR, isomerization,
and reaction channels. These processes can be identi-
fied by analyzing adiabatic or nonadiabatic dynamics
and simulated fs-signals. Therefore, the conditions
under which the identified processes are experimen-
tally observed can be precisely determined. This
predictive power of theory can be directly used for
conceptual planning of experiments, as illustrated in
several examples in this review. Moreover, the tai-
lored fields obtained in the framework of optimal
control theory can drive selected processes, such as
direct versus sequential ionization, isomerization
toward one of the isomers, or the chosen reaction
channel for which particular bond breaking or new
bonding rearrangements promote the emanation of
the reaction products.

Theoretical methods which combine ab initio MD
“on the fly” with the Wigner distribution approach,
which is based on classical treatment of nuclei and
on quantum chemical treatment of electronic struc-
ture, represent an important theoretical tool for
analysis and control of ultrashort processes in com-
plex systems. Moreover, the possibility to include, in
principle, quantum effects for nuclei by introducing
corrections makes this approach attractive for further
developments. However, for this purpose, new pro-
posals for improving the efficient inclusion of quan-
tum effects for nuclei and fast but accurate calcula-
tions of MD “on the fly” in the electronic excited
states are mandatory. Both aspects represent attrac-
tive and important theoretical research areas for the
future.

The strategies based on localization of the wave
packet or ensemble (e.g., an intermediate target),
ensuring the connective pathway between the initial
state and the target in complex systems involving at
least two different electronic states, are attractive for
the following reasons. They allow simplification of
optimization of pump and dump pulses for complex
systems. They also permit selection of important
parts of energy surfaces, which makes the inversion
problem accessible. Finally, the analysis of the un-
derlying dynamics makes it possible to assign the
shapes of optimized pulses to processes, allowing one
to unravel the mechanisms responsible for optimal
control. This also allows the use of optimal control
schemes as analysis tools for complex systems, which
is an important conceptual issue with a promising
perspective for applications in biomolecules, clusters,
or even their complexes.

Due to the structure-reactivity relationships of
clusters, the reactive centers can be identified. Fur-
thermore, their size selectivity can be exploited for

invoking reactions toward organic and inorganic
molecules or for finding the cooperative effects needed
for promoting these reactions. This research direction
opens new roads for using tailored laser fields to drive
the laser induced selective chemical reactions involv-
ing clusters. It also takes advantage of their func-
tional properties, which might invoke a large impact
in different application areas.
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8. Appendix A: Analytic Derivatives for Excited
States and Adiabatic Molecular Dynamics in the
“Frozen Ionic Bonds” Approximation

For nonstoichiometric sodium fluoride clusters with
a single excess electron (NanFn-1), the “frozen ionic
bond” approximation for n - 1 electrons involved in
ionic bonding allows one to describe the ground state
of the system at the restricted open shell Hartree-
Fock (ROHF) level, yielding canonical MOs æi. The
excited states are obtained as eigenstates of an
effective one-excess-electron Hamiltonian ĥ′ contain-
ing Coulomb and exchange operators with the core.
The corresponding matrix elements h′ij in the MO
basis æi form a submatrix of the Fock matrix and can
be obtained straightforwardly, modifying the stan-
dard self-consistent field (SCF) program in such a
way that after the convergence of the neutral re-
stricted open shell Hartree-Fock (ROHF) SCF pro-
cedure has been achieved, one additional closed shell
SCF iteration can be performed, yielding the closed
shell Fock matrix. In analogy, the code for the Fock
matrix derivative can be modified to compute deriva-
tives of the h′ matrix elements.

The wave functions ψi of the individual states of
the one excess electron are then obtained as eigen-
functions of ĥ′ and can be expressed as

where o labels the open shell singly occupied HOMO,
and D is an unitary matrix which diagonalizes h′

The eigenvalues εi are the energies of the one excess
electron, and their differences correspond to transi-
tion energies. Therefore, the total energy of an excited

ψi ) ∑
j)o

M

Djiæj (i ) o, ..., M) (76)

h′D ) DE, E ≡ diag(εi) (77)
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state has the following form:

where εo is the ground-state energy of the one excess
electron. Note that although the energy difference εi
- εo might resemble use of the simple Koopmans
theorem, the energy levels of the excess electron εi
are (with the exception of εo) not equal to the SCF
MO energy levels. They correspond to the solution
of the excited states of the one excess electron, which
feels the constant field of the remaining electrons,
being “frozen” in the ground state.

The eigenvectors Dji are used to obtain the transi-
tion density matrix γh,l(jk) between the h-th and the
l-th states

from which transition moments and, subsequently,
the oscillator strengths are computed. The total
computational cost for the calculation of the absorp-
tion spectrum involving the transition energies and
oscillator strengths amounts to the ROHF calcula-
tion, the single closed shell iteration, and a few
matrix multiplications needed for the calculation of
transition moments. An excellent agreement between
the spectra of Na2F and Na4F3 obtained from the
MRCI100 method, correlating all electrons, and those
obtained from the “frozen ionic bond” approximation
confirms the accuracy of the latter.

For the calculation of the gradient of the total
energy given by eq 78, in addition to the gradient of
the ROHF SCF energy, the derivatives of the excess
electron energies ∇Rεi are needed. Using the defini-
tion of the orbital energies εi

one obtains

Since the term in square brackets corresponds to a
derivative of the normalization condition

it remains only the second term

which requires the calculation of derivatives of the
effective one-excess-electron Hamiltonian ∇Rh′jk.

They are identical to the derivatives of the closed
shell Fock matrix F obtained from the cation NanFn-1

+

with the converged orbitals of the neutral system
NanFn-1. The gradient

with one-electron (hij) and two-electron integrals in
the MO basis is therefore reduced to known expres-
sions.

In the above equations, the summations over k, l
indices run from 1 to M, while i, j indices are confined
to o, ..., M. The quantities Ukl

R in eq 87 describe the
influence of geometry changes on the SCF eigen-
vectors CRi, which are defined as

and are obtained as solutions of the extended general
restricted open shell coupled perturbed Hartree-
Fock (CPHF) equations. These are part of program
packages for computation of analytic second deriva-
tives of the ROHF energy.204 Notice that the “ex-
tended” CPHF equations are needed in order to
obtain the Uki

R quantities where the k, i indices may
correspond both to occupied and to virtual orbitals,
which are not necessary for the analytic second
derivatives of the ROHF energy. The appropriate
computational procedure is described in refs 435 and
436. The quantities hij

R, (ij|kk)R, and (ik|jk)R in eq 88
represent derivatives of one- and two-electron inte-
grals in the AO basis transformed into the MO basis
(not including derivatives of the SCF eigenvectors)

To summarize, the derivative of the effective one-
excess-electron Hamiltonian can be built just like the
derivative of the Fock matrix in CPHF equations for
a closed shell system (of the cation), but using the
SCF eigenvectors CRj and the Uji

R coefficients ob-
tained from ROHF and extended CPHF calculation
of the open shell neutral system.

Once the analytic gradient of the one-excess-
electron energy is known, the velocity Verlet time
propagation algorithm (cf. eqs 1 and 2) can be
employed in order to solve equations of motion and

∇Rh′ij ) ∇Rhij + ∑
c

[2∇R(ij|cc) - ∇R(ic|cj)] (86)

∇Rh′ij ) h′ij
R + ∑

k
(Uki

Rh′kj + Ukj
Rh′ik) + ∑

k
∑

l
Ukl

RAij,kl

(87)

h′ij
R ) hij

R + ∑
k

{2(ij|kk)R - (ik|jk)R} (88)

Aij,kl ) 4(ij|kl) - (ik|jl) - (il|jk) (89)

∇RCRi ) ∑
j)1

M

CRjUji
R (90)

hij
R ) ∑

µν

AO

CµiCνj∇Rhµν (91)

(ij|kl)R ) ∑
µνFσ

AO

CµiCνjCFkCσl∇R(µν|Fσ) (92)

Ei ) ESCF + εi - εo (78)

γh,l(j,k) ) Djh
/ Dkl (79)

εi ) 〈ψi|h′|ψi〉 (80)

) ∑
j,k

(D†)ijh′ijDki (81)

∇Rεi ) ∑
jk

[(∇RD†)ijh′jkDki + (D†)ijh′jk∇RDki +

(D†)ij(∇Rh′jk)Dki] (82)

) ∑
j
εi[(∇RD†)ijDji + (D†)ij∇RDji] +

∑
jk

(D†)ij(∇Rh′jk)Dki (83)

∑
jk

(D†)ijDjk ) δik (84)

∇Rεi ) ∑
jk

(D†)ij(∇Rh′jk)Dki (85)
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to compute the classical trajectories of the nuclei in
the adiabatic electronic excited states.

9. Appendix B: Analytic Expression for
Nonadiabatic Couplings in the “Frozen Ionic
Bonds” Approximation and Nonadiabtic
Dynamics

Inclusion of nonadiabatic effects in the molecular
dynamics requires the calculation of the first-order
nonadiabatic couplings (∇R)ij ≡ 〈ψi|∇R|ψj〉 between the
electronic states ψi and ψj.

The nonadiabatic couplings employing the expan-
sion of the ψj functions into the MO basis æi (cf. eq
76) contain two terms:

The derivation of each of them will be briefly out-
lined.

The first term on the right-hand side involves the
derivatives of the eigenvectors of the effective one-
excess-electron Hamiltonian matrix ∇RDki, which can
be obtained from the derivative of the effective one-
excess-electron Hamiltonian ∇Rh′ij (cf. eq 86). For
this purpose, vector E for the diagonal matrix ele-
ments of eigenvalues εi of the Hamiltonian h′ is
introduced, and D is the unitary matrix of the
corresponding eigenvectors:

The derivative of the eigenvalues can be obtained by
multiplying eq 94 by D† from the left and performing
the derivative (taking into account that the derivative
of the normalization condition (eq 95) is zero):

Notice that eq 96 holds only for the diagonal elements
of the matrix E, while an analogous equation for the
whole matrix ∇RE is not valid.

To obtain the derivative of eigenvectors ∇RD, the
solution has to be searched in the following form:

Since D is unitary, X is uniquely defined, and the
derivative of the normalization condition (eq 95)
implies the antihermiticity of X:

Performing the derivative of eq 94

and multiplying this equation by D† from the left
using eqs 94 and 97, one obtains

The right-hand side matrix is labeled by Y; it can be
easily verified that it is Hermitian, and due to eq 96,
it has zeros on its diagonal. Since the matrix E is

diagonal, eq 100 can be explicitly solved for the
matrix elements of X

Notice that this equation is in agreement with the
requirement of the antihermiticity of X (eq 98).
Furthermore, if the eigenvalues of the h′ matrix are
degenerate, the denominator in eq 101 becomes zero,
which is in agreement with the fact that eigenvectors
corresponding to the same eigenvalue are not uniquely
defined. The explicit expression for the matrix ele-
ments of X, eq 101, together with eq 97 yields the
needed derivative of eigenvectors ∇RD.

For the second term on the right-hand side of eq
93, the expansion from the MO basis into the AO
basis is used:

which yields

where SâR is the overlap matrix and the derivatives
of the SCF eigenvectors ∇RCRi can be obtained from
the extended coupled perturbed Hartree-Fock coef-
ficients UR, which have already been outlined for the
adiabatic MD in Appendix A. The first term on the
right-hand side of eq 103 thus simplifies in the matrix
notation to

where the orthonormality of the SCF eigenvectors
C†SC ) 1 has been used.

The evaluation of the second term on the right-
hand side of eq 103 requires the integrals in the
contracted Cartesian Gaussian AO basis:

Since the contraction coefficients KγR are constant,
the transformation to a primitive basis φγ is simple:

The integrals in the primitive AO basis 〈φδ|∇R|φγ〉
vanish, unless the derivative is taken with respect
to the nuclear coordinate of the atom, at which the
φγ function is centered. Introducing the shorthand
notation

Xij )
Yij

Ejj - Eii
(i * j); Xii ) 0 (101)

æi ) ∑
R

CRiøR (102)

〈æj|∇R| æi〉 ) ∑
Râ

Câj
/ SâR∇RCRi + ∑

Râ
Câj

/ CRi〈øâ|∇R|øR〉

(103)

C†S∇RC ) C†SCUR ) UR (104)

øR ) ∑
γ

KγRφγ (105)

〈øâ|∇R|øR〉 ) ∑
γδ

KγRKδâ〈φδ|∇R|φγ〉 (106)

S(δ;iγ,jγ,kγ,úγ) ) ∫(x - Xδ)
iδ(y - Yδ)

jδ ×
(z - Zδ)

kδe-úδ|r-Rδ|2(x - Xγ)
iγ(y - Yγ)

jγ ×
(z - Zγ)

kγe-úγ|r-Rγ|2 dx dy dz (107)

〈ψj|∇R|ψi〉 ) ∑
k

Dkj
/ ∇RDki + ∑

kl
Dlj

/Dki〈æl|∇R|æk〉 (93)

h′D ) DE (94)

D†D ) 1 (95)

(∇RE)ii ) (D†∇Rh′D)ii (96)

∇RD ) DX (97)

X† + X ) 0 (98)

(∇Rh′)D + h′(∇RD) ) (∇RD)E + D∇RE (99)

XE - EX ) D†(∇Rh′)D - ∇RE ≡ Y (100)
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the nonvanishing x component can be written as

and analogous equations for the y and z components
hold. The AO derivative coupling integrals are thus
transformed to overlap integrals over Cartesian
Gaussian functions with different angular momenta,
which are well-known (see, e.g., ref 204).

In summary, the implementation of simple analytic
expressions derived for nonadiabatic couplings in the
framework of the “frozen ionic bonds” approximation
allows one to carry out nonadiabatic dynamics at low
computational demand.
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(86) Bonačić-Koutecký, V.; Veyret, V.; Mitrić, R. J. Chem. Phys. 2001,
115, 10450.
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(121) Mitrić, R.; Hartmann, M.; Pittner, J.; Bonačić-Koutecký, V. J.
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(176) Berry, R. S.; Bonačić-Koutecký, V.; Gaus, J.; Leisner, T.; Manz,
J.; Reischl-Lenz, B.; Ruppe, H.; Rutz, S.; Schreiber, E.; Vajda,
S.; de Vivie-Riedle, R.; Wolf, S.; Wöste, L. Phys. Rev. Lett. 1997,
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